欢迎您访问起点作文网,请分享给你的朋友!

当前位置 : 首页 > 范文大全 > 工作总结

数学的知识点总结(收集8篇)

来源: 时间:2025-11-24 手机浏览

数学的知识点总结篇1

一、直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180

(2)直线的斜率

①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的`斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。

②过两点的直线的斜率公式:

注意下面四点:

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)

⑤一般式:(A,B不全为0)

注意:○1各式的适用范围

○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(4)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)过定点的直线系

(ⅰ)斜率为k的直线系:直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

(5)两直线平行与垂直;

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(6)两条直线的交点

相交:交点坐标即方程组的一组解。方程组无解;方程组有无数解与重合

(7)两点间距离公式:设是平面直角坐标系中的两个点,则

(8)点到直线距离公式:一点到直线的距离

(9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。

数学的知识点总结篇2

1.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则

①点在圆上<===>d=r;②点在圆内<===>dd>r.

二.圆的对称性:

1.与圆相关的概念:

④同心圆:圆心相同,半径不等的两个圆叫做同心圆。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

⑦圆心角:顶点在圆心的角叫做圆心角.

⑧弦心距:从圆心到弦的距离叫做弦心距.

2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:

①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

4.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.

三.圆周角和圆心角的关系:

1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.

2.圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.

推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;

推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;

四.确定圆的条件:

1.理解确定一个圆必须的具备两个条件:

经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.

2.定理:不在同一直线上的三个点确定一个圆.

3.三角形的外接圆、三角形的外心、圆的内接三角形的概念:

(1)三角形的`外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.

(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心.

(3)三角形的外心的性质:三角形外心到三顶点的距离相等.

初中数学实数的概念及分类

1、实数的分类正有理数有理数零有限小数和无限循环小数

负有理数

正无理数

无理数无限不循环小数

负无理数

整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如7,2等;

π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;3

(3)有特定结构的数,如0.1010010001…等;

数学有理数基础知识点

1.有理数的加法运算

同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

“大”减“小”是指绝对值的大小。

2.有理数的减法运算

减正等于加负,减负等于加正。

有理数的乘法运算符号法则。

同号得正异号负,一项为零积是零。

3.有理数混合运算的四种运算技巧

转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。

凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。

分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。

巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。

数学的知识点总结篇3

学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,

22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。

(1)在介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的`方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。

(2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

数学的知识点总结篇4

1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。

5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π

7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×

8、圆柱的体积=圆柱的`底面积×高,即V=sh或πr2×

(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)

9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)

11、把圆锥的侧面展开得到一个扇形。

12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷

13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

数学的知识点总结篇5

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。

2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.

3.多项式:几个单项式的和叫多项式。

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

5.常数项:不含字母的项叫做常数项。

6.多项式的排列

(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

7.多项式的排列时注意:

(1)由于单项式的项,包括它前面的.性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

(2)有两个或两个以上字母的多项式,排列时,要注意:

a.先确认按照哪个字母的指数来排列。

b.确定按这个字母向里排列,还是向外排列。

(3)整式:

单项式和多项式统称为整式。

8.多项式的加法:

多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。

9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。

10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。

11.掌握同类项的概念时注意:

(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:

①所含字母相同。

②相同字母的次数也相同。

(2)同类项与系数无关,与字母排列的顺序也无关。

(3)所有常数项都是同类项。

12.合并同类项步骤:

(1)准确的找出同类项;

(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;

(3)写出合并后的结果。

13.在掌握合并同类项时注意:

(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0;

(2)不要漏掉不能合并的项;

(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

14.整式的拓展

整式的乘除:重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握.因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。

整式四则运算的主要题型有:

(1)单项式的四则运算

此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。

(2)单项式与多项式的运算


数学的知识点总结篇6

第一章有理数

1、大于0的数是正数。

2、有理数分类:正有理数、0、负有理数。

3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)

4、规定了原点,单位长度,正方向的直线称为数轴。

5、数的大小比较:

①正数大于0,0大于负数,正数大于负数。

②两个负数比较,绝对值大的反而小。

6、只有符号不同的两个数称互为相反数。

7、若a+b=0,则a,b互为相反数

8、表示数a的点到原点的距离称为数a的绝对值

9、绝对值的三句:正数的绝对值是它本身,

负数的绝对值是它的相反数,0的绝对值是0。

10、有理数的计算:先算符号、再算数值。

11、加减:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)

12、乘除:同号得正,异号的负

13、乘方:表示n个相同因数的乘积。

14、负数的奇次幂是负数,负数的偶次幂是正数。

15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。

16、科学计数法:用ax10n表示一个数。(其中a是整数数位只有一位的数)

17、左边第一个非零的数字起,所有的数字都是有效数字。

【知识梳理】

1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.

5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的`使用运算律是掌握好实数运算的关键。

一元一次方程知识点

知识点1:等式的概念:用等号表示相等关系的式子叫做等式.

知识点2:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可.

说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数.

知识点3:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.

例2:如果(a+1)+45=0是一元一次方程,则a________,b________.

分析:一元一次方程需要满足的条件:未知数系数不等于0,次数为1.∴a+1≠0,2b-1=1.∴a≠-1,b=1.

知识点4:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则a±m=b±m.

(2)等式两边乘以(或除以)同一个不为0的数或代数式,所得的结果仍是等式.

即若a=b,则am=bm.或.此外等式还有其它性质:若a=b,则b=a.若a=b,b=c,则a=c.

说明:等式的性质是解方程的重要依据.

例3:下列变形正确的是()

A.如果ax=bx,那么a=bB.如果(a+1)x=a+1,那么x=1

C.如果x=y,则x-5=5-yD.如果则

分析:利用等式的性质解题.应选D.

说明:等式两边不可能同时除以为零的数或式,这一点务必要引起同学们的高度重视.

知识点5:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程.

知识点6:关于移项:⑴移项实质是等式的基本性质1的运用.

⑵移项时,一定记住要改变所移项的符号.

知识点7:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1.具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.

例4:解方程.

分析:灵活运用一元一次方程的步骤解答本题.

解答:去分母,得9x-6=2x,移项,得9x-2x=6,合并同类项,得7x=6,系数化为1,得x=.

说明:去分母时,易漏乘方程左、右两边代数式中的某些项,如本题易错解为:去分母得9x-1=2x,漏乘了常数项.

知识点8:方程的检验

检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等.

注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边.

三、一元一次方程的应用

一元一次方程在实际生活中的应用,是很多同学在学习一元一次方程过程中遇到的一个棘手问题.下面是对一元一次方程在实际生活中的应用的一个专题介绍,希望能为同学们的学习提供帮助.

一、行程问题

行程问题的基本关系:路程=速度×时间,

速度=,时间=.

1.相遇问题:速度和×相遇时间=路程和

例1甲、乙二人分别从A、B两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问甲、乙二人经过多长时间能相遇?

解:设甲、乙二人t分钟后能相遇,则

(200+300)×t=1000,

t=2.

答:甲、乙二人2钟后能相遇.

2.追赶问题:速度差×追赶时间=追赶距离

例2甲、乙二人分别从A、B两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问几分钟后乙能追上甲?解:设t分钟后,乙能追上甲,则

(300-200)t=1000,

t=10.

答:10分钟后乙能追上甲.

3.航行问题:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.例3甲乘小船从A地顺流到B地用了3小时,已知A、B两地相距90千米.水流速度是20千米/小时,求小船在静水中的速度.

解:设小船在静水中的速度为v,则有

(v+20)×3=90,

v=10(千米/小时).

答:小船在静水中的速度是10千米/小时.

二、工程问题

工程问题的基本关系:①工作量=工作效率×工作时间,工作效率=,工作时间=;②常把工作量看作单位1.

例4已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合作5天后,甲另有事,乙再单独做几天才能完成?

解:设甲再单独做x天才能完成,有

(+)×5+=1,

x=11.

答:乙再单独做11天才能完成.

三、环行问题

环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.

例5王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?

解:设经过t分钟二人相遇,则

(300-200)t=400,

t=4.

答:经过4分钟二人相遇.

四、数字问题

数字问题的基本关系:数字和数是不同的,同一个数字在不同数位上,表示的数值不同.

例6一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数.

解:设原两位数的个位数字是x,则十位数字为x+1,根据题意,得

[10(x-1)+x]+[10x+(x+1)]=33,

x=1,则x+1=2.

∴这个数是21.

答:这个两位数是21.

五、利润问题

利润问题的基本关系:①获利=售价-进价②打几折就是原价的十分之几例7某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?

解:设该电器每台的进价为x元,则定价为(48+x)元,根据题意,得6[0.9(48+x)-x]=9[(48+x)-30-x],

x=162.

48+x=48+162=210.

答:该电器每台进价、定价各分别是162元、210元.

六、浓度问题

浓度问题的基本关系:溶液浓度=,溶液质量=溶质质量+溶剂质量,溶质质量=溶液质量×溶液浓度

例8用“84”消毒液配制药液对白色衣物进行消毒,要求按1∶200的比例进行稀释.现要配制此种药液4020克,则需要“84”消毒液多少克?

解:设需要“84”消毒液x克,根据题意得

=,

x=20.

答:需要“84”消毒液20克.

七、等积变形问题

例1用直径为90mm的圆柱形玻璃杯(已装满水,且水足够多)向一个内底面积为131×131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降了多少?(结果保留π)

第9/11页

分析:玻璃杯里倒掉的水的体积和长方体铁盒里所装的水的体积相等,所以等量关系为:

玻璃杯里倒掉的水的体积=长方体铁盒的容积.

解:设玻璃杯中水的高度下降了xmm,根据题意,得

经检验,它符合题意.

八、利息问题

例2储户到银行存款,一段时间后,银行要向储户支付存款利息,同时银行还将代扣由储户向国家缴纳的利息税,税率为利息的20%.

(1)将8500元钱以一年期的定期储蓄存入银行,年利率为2.2%,到期支取时可得到利息________元.扣除利息税后实得________元.

(2)小明的父亲将一笔资金按一年期的定期储蓄存入银行,年利率为2.2%,到期支取时,扣除所得税后得本金和利息共计71232元,问这笔资金是多少元?

(3)王红的爸爸把一笔钱按三年期的定期储蓄存入银行,假设年利率为3%,到期支取时扣除所得税后实得利息为432元,问王红的爸爸存入银行的本金是多少?

分析:利息=本金×利率×期数,存几年,期数就是几,另外,还要注意,实得利息=利息-利息税.

解:(1)利息=本金×利率×期数=8500×2.2%×1=187元.

实得利息=利息×(1-20%)=187×0.8=149.6元.

(2)设这笔资金为x元,依题意,有x(1+2.2%×0.8)=71232.

解方程,得x=70000.

经检验,符合题意.

答:这笔资金为70000元.

(3)设这笔资金为x元,依题意,得x×3×3%×(1-20%)=432.

解方程,得x=6000.

经检验,符合题意.

答:这笔资金为6000元.

数学的知识点总结篇7

圆的初步认识

一、圆及圆的相关量的定义(28个)

1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

二、有关圆的字母表示方法(7个)

圆--⊙半径r弧--⌒直径d

扇形弧长/圆锥母线l周长C面积S三、有关圆的基本性质与定理(27个)

1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

P在⊙O外,POP在⊙O上,PO=r;P在⊙O内,PO

2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5.一条弧所对的圆周角等于它所对的圆心角的一半。

6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

7.不在同一直线上的3个点确定一个圆。

8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的'交点,到三角形3边距离相等。

9.直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):

AB与⊙O相离,POAB与⊙O相切,PO=r;AB与⊙O相交,PO

10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

11.圆与圆的位置关系(设两圆的半径分别为R和r,且Rr,圆心距为P):

外离P外切P=R+r;相交R-r

三、有关圆的计算公式

1.圆的周长C=2d2.圆的面积S=s=3.扇形弧长l=nr/180

4.扇形面积S=n/360=rl/25.圆锥侧面积S=rl

四、圆的方程

1.圆的标准方程

在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

(x-a)^2+(y-b)^2=r^2

2.圆的一般方程

把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是

x^2+y^2+Dx+Ey+F=0

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.

五、圆与直线的位置关系判断

链接:圆与直线的位置关系(一.5)

平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是

讨论如下2种情况:

(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

如果b^2-4ac0,则圆与直线有2交点,即圆与直线相交

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切

如果b^2-4ac0,则圆与直线有0交点,即圆与直线相离

(2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴)

将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2

令y=b,求出此时的两个x值x1,x2,并且我们规定x1

当x=-C/Ax2时,直线与圆相离

当x1

当x=-C/A=x1或x=-C/A=x2时,直线与圆相切

圆的定理:

1不在同一直线上的三点确定一个圆。

2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2

1圆的两条平行弦所夹的弧相等

3圆是以圆心为对称中心的中心对称图形

4圆是定点的距离等于定长的点的集合

5圆的内部可以看作是圆心的距离小于半径的点的集合

6圆的外部可以看作是圆心的距离大于半径的点的集合

希望这篇20xx中考数学知识点汇总,可以帮助更好的迎接即将到来的考试!

数学的知识点总结篇8

一、数的分类

其中:有理数(即可比数)即有限小数或无限循环小数;无理数即无限不循环小数。

二、数轴

(1)三要素:原点、正方向、单位长度。

(2)实数数轴上的`点。

(3)利用数轴可比较数的大小,理解实数及其相反数、绝对值等概念。

三、绝对值

(1)几何定义:数轴上,表示数a的点与原点的距离叫做数a的绝对值,记做。

(2)代数定义:=

四、相反数、倒数

(1)a、b互为相反数a+b=0(或a=-b);

(2)a、b互为倒数ab=1(或a=)。

五、几个非负数

(1)

(2)a

(3)0)。

(4)若几个非负数之和为0,则这几个非负数也分别为0.

六、

(1)an叫做a的n次幂,其中,a叫底数,n叫指数。

(2)若x=a(a0),则x叫做a的平方根,记做算术平方根记做。

(3)若x=a,则x叫做a的立方根,记做。因此=a

(4)算术平方根性质:

①()=a(a

②=;

③(a0,b

④(a0,b0)。

七、运算顺序

1.同级:左右

2.不同级:高低(先乘方和开方,再乘除,最后加减)

3.有括号:里外(先去小括号、再去中括号、最后去大括号)