欢迎您访问起点作文网,请分享给你的朋友!

当前位置 : 首页 > 范文大全 > 办公范文

简述生物脱氮的基本原理范例(3篇)

来源: 时间:2025-08-22 手机浏览

简述生物脱氮的基本原理范文

关键词:SBR;脱氮除磷;污水

中图分类号:U664.9+2文献标识码:A文章编号:

1.概述

SBR工艺也叫序批式活性污泥法,它最根本的特点是处理工序不是连续的,而是间歇的、周期性的,污水一批一批地顺序经过进水、曝气、沉淀、排水,然后又周而复始。最初的SBR工艺进水、曝气、沉淀、排水、排泥都是间歇的,后来出现各种改型,有的将进水改为连续,有的将部分曝气改为连续。有的将出水改为连续,但只要还保留着序批处理周期运行的特点,就应属于SBR工艺的范畴。

2.SBR技术的特点

SBR法具有以下特点:

工艺流程简单,设备少,占地省。

投资小,构筑物少,一般只设反应池,无需二沉池和污泥回流设备。

(3)出水带走的活性污泥少,出水质量高。

(4)具有较强的脱氮除磷能力,运行方式灵活控制。

(5)可有效防止污泥膨胀。

(6)具有较高的耐冲击负荷的能力。

(7)由于SBR法本身的间歇运行特点,很适合处理流量变化大甚至间歇排放的工业废水。据统计显示,小型企业废水量少,多采用SBR工艺,既可以节省基建费用又可以灵活操作。

3.SBR法脱氮除磷的影响因素

SBR法生物处理过程中,由于多种菌(脱氮菌、PAOs、DPB等)的协同作用,不同的环境及运行条件都将会影响总体处理效果碳源、泥龄、DO等之间存在着诸多内在矛盾,若条件控制不好,常常会造成脱氮效果好而除磷结果不佳;反之亦然为此需探求最佳影响条件,以强化脱氮除磷的效果.近年来SBR脱氮除磷影响因素也是国内外的研究热点。

3.1进水有机物影响

碳源影响着脱氮除磷的总体效果,这是因为聚磷菌(PAO)和反硝化菌会竞争碳源.必要时需外加碳源以满足二者的需求,同时还要考虑碳源能否快速转化成脂肪酸(VFA)供PAO利用.实验证明在SBR法处理屠宰废水中,通过预发酵增加VFA,除磷及脱氮效率大大提高,NH4+—N及PO43-—P去除率分别达84%和98%,强化了营养物的去除。通过实验,在屠宰废水处理中探讨了内碳源脱氮除磷的可行性,结果显示,利用未经消化的猪肥料为内碳源,当进水氨氮和磷酸盐浓度分别为900mg/L及90mg/L时,可达到99.7%的脱氮率和97.9%的除磷率为解决碳源缺乏的矛盾提供了一种思路。

3.2曝气及DO影响

DO影响脱氮除磷效果。如反硝化正常运行时要求DO低于0.5mg/L,而厌氧区则要严格控制DO,否则会影响聚磷菌过量吸磷能力。研究结果显示:进水时限量曝气方式脱氮除磷效果较好。而控制曝气时间最佳(3.5h)可达到较高的TN及TP去除率(分别为97.5%、65.5%)。

3.3PH值

聚磷菌在厌氧段时的释磷量一般随pH值的升高而增加,pH而值是否影响聚磷菌对有机物的吸收仍有矛盾之处。当Ph

3.4水力停留时间

由于聚磷菌对有机物的吸收在厌氧段内是很快完成的,所以厌氧段内更重要的是污泥龄;适当延长厌氧段的水力停留时间,会提高除磷的效果,这可能是可以形成更多的PHA的原因。但是,如果厌氧/好氧水力停留时间比过大,也会使除磷失效。

3.5泥龄影响

泥龄长短对脱氮除磷也有直接影响。一般来说短泥龄,排泥量大,除磷效果好,但泥龄小于15d时硝化受抑制综合考虑脱氮除磷,应根据实际情况选择最佳SRT。通过实验得出满足硝化和除磷的最佳SRT(17~21d)。研究SRT对营养物去除的影响,结果显示:SRT为10d时,可达到最大的氨氮及磷去除率(分别为84%和74%),SRT≥15d时营养物去除率下降。

4.提高SBR处理效果的方法

一般SBR工艺流程当脱氮效果好时,则除磷效果较差,反之亦然,很难同时获得好的脱氮除磷效果。所以特别对SBR工艺提出以下改进方法,以提高该工艺的整体处理效果。

1选择较大的泥龄,建议泥龄应大于4d~5d;

2适当延长厌氧段的水力停留时间,厌氧:缺氧好氧:水力停留时间比为1:1:(3~4);

3.合理控制排水量及排泥量。

4.曝气系统采用深水曝气机,利用PLC实现曝气—停曝自动控制;

5.SBR工艺污水处理适用性

通过研究,SBR法是一种处理高浓度有机污水及工业污水行之有效且能耗低的生物处理工艺。它具有工艺系统组成简单,一池多用,无须设污泥回流设备、二沉池,建设费用与运行费用都较低等特点。在运行时,对冲击负荷适应能力强,一般不产生污泥膨胀现象,管理较简单;并且具有运行方式灵活多变,通过对运行方式的调节,在曝气池内能进行脱氮和除磷反应,处理水质优于传统活性污泥法。

在实际工作中,当处理规模大时,需多套SBR池并联运行,使控制系统及维护管理趋于复杂,故SBR法特别适合于一般中、小型规模,有机浓度较高、可生化性好的工业废水处理,具有较大的推广应用价值。

6.SBR工艺启动总结

SBR反应池内活性污泥驯化成熟后,活性高、沉降性能好、适应能力强,通过调节曝气机的运行时间和台数、控制混合液溶解氧量、调节SBR池剩余活性污泥的排放和沉淀、闲置时间等措施,使有机污染物得到有效去除,能保证SBR系统具有良好的处理效果。

在SBR工艺系统启动初期应大量曝气,提高有机负荷应该慎重,以免造成超负荷运行。当污泥凝聚性能好转时,则需有意加大负荷,以期促进污泥生长,提高混合液污泥浓度。当30min沉降实验及混合液污泥浓度均显示污泥性能足够时,应及时排除剩余污泥,以免污泥老化。在污泥驯化期还要适时排放泥水分离后的上清液。

SBR工艺系统启动过程中,应综合运用感官判断和化学分析方法同步监测多项指标,有效控制和调整整个污水处理系统的运行。操作者可使用以下感官和物理指标估计运行情况:①气味,正常时SBR池产生轻微的霉烂味道,仅在厌氧条件下才产生恶臭;②泡沫,泡沫多,悬浮物浓度高等原因;轻微泡沫,污泥不成熟;黑色泡沫,污泥老化。

3结束语

总之,SBR拓展了普通活性污泥法的处理能力,运行操作灵活,通过时间卜的有效控制和变化来满足多功能的要求,通过调节曝气时间满足出水水质要求,效果稳定。

参考文献:

【1】冯旺银SBR法污水处理应用研究[期刊论文]-中国科技博览2011(33)

【2】刘宝彦SBR污水处理工艺探讨[期刊论文]-黑龙江科技信息2011(20)

简述生物脱氮的基本原理范文篇2

关键词:生物脱氮除磷技术;污废水;除磷效果;污水处理;脱氮率;磷源污染物文献标识码:A

中图分类号:X703文章编号:1009-2374(2016)17-0075-02DOI:10.13535/ki.11-4406/n.2016.17.036

伴随着我国经济的飞速增长,我国水资源污染问题越来越严重,地球环境劣化及水体富营养化问题,导致污水处理难度增加。为了改善污水处理问题,需要解决传统处理工艺中去除氮、磷效率差的问题,而且传统处理工艺还存在成本高的问题,因此污水处理厂需要加强对污废水生物脱氮除磷技术的研究,以期实现我国污废水处理的高效性、经济性、节能性,从而促进我国环境保护更进一步发展。

1生物脱氮除磷技术的工作原理

1.1生物脱氮机理

在进行生物脱氮研究时可以发现,过去认为生物脱氮是利用厌氧区设置或控制过程的方式,实现厌氧环境的形成,从而以硝化反硝化作用起到脱氮的作用。而随着科技的进步,如今最新研究却发现厌氧反应器存在废水氨氮含量指标减少问题,好氧条件下出现同时硝化反硝化作用等,这些现象都是传统生物脱氮理论无法解释的现象。从微环境角度分析,微生物絮体表层溶解氧浓度高,其传递受阻,加上微生物消耗溶解氧,导致微生物絮体内形成厌氧环境和兼氧环境,随后由于搅动使微环境出现变换,最终进入微生物厌氧、兼氧、好氧等不断交替,产生硝化反硝化作用。另外,异氧硝化菌和好氧反硝化菌可以在不用厌氧、兼氧、好氧等不断交替下,单纯在厌氧条件下发生硝化作用。根据相关研究可知,在亚硝化菌作用下可以实现将氨转化为氮。

1.2生物除磷机理

生物除磷由聚磷菌完成,是指利用在厌氧环境下,聚磷菌会释放磷,聚磷菌把细胞内聚磷水解为正酸盐,并从中获得能量,吸收污水中易降解的化学需氧量。而在有氧环境下,其则会摄取磷,即在好氧或缺氧条件下,聚磷菌以分子氧或化合态氧作为电子受体,氧化代谢内贮物质PHB或PHV等,过量地从无水中摄取磷酸盐,其中一部分转化为聚磷,作为能量贮于胞内,并进行富磷污泥的排除,从而起到除磷的作用。通过研究可知,进行废水生物除磷,聚磷菌必须先在厌氧条件下进行释放磷,随后才能够在有氧条件下提取磷,最后达到除磷的效果。其中在厌氧环境下,聚磷菌释放磷水平不会对最终的除磷效果产生大的影响,其主要与有机物类型和硝酸根离子含量有关。

随着相关研究人员加强对生物除磷的研究,可以认为在缺氧环境下将硝酸根离子作为电子受体内的聚羟基脂肪酸酯并进行磷的摄取,从而达到反硝化和加大摄取磷的目的。虽然该种工艺的研究还不够完善,其将会在未来逐渐得到全新的开发,从而降低化学需氧量,有效提高除磷效果。

2污废水生物脱氮除磷的工艺类型

2.1生物脱氮技术

污废水生物脱氮技术主要是利用相应的设备创建好氧、缺氧环境,实现硝化反硝化脱氮。本文主要分析了三种生物脱氮工艺:

(1)活性污泥脱氮工艺。活性污泥脱氮工艺是目前应用最普遍的生物脱氮技术,其最初在实验室一直到生产应用,应用一直比较频繁。目前最常见的活性污泥脱氮工艺主要有厌氧-好氧工艺法、厌氧-缺氧-好氧工艺法、序批式活性污泥法及氧化沟工艺。厌氧-好氧工艺法主要是通过设置厌氧和好氧环境,使含氮有机物在好氧环境下出现氨化、硝化反应,在厌氧环境下出现反硝化反应,从而使其能够产生硝化反硝化作用,达到脱氮的目的。厌氧-好氧工艺法具有操作简单、范围小、对污泥膨胀控制比较明显等优势,但其存在脱氮效果差,不能够承受较大冲击负荷力。厌氧-缺氧-好氧工艺法是在传统方法中增加缺氧环境,污水在厌氧环境下实现将大分子有机物转化为小分子,在缺氧环境下,实现反硝化脱氮,在好氧环境下,有机物浓度较低,保障硝化菌的生长,从而达到脱氮目的。序批式活性污泥法具有成本低、控制污泥膨胀、去除氮磷效果明显。如今随着科技的发展,通过机械和控制装置进行该方法的应用,可以有效实现厌氧-缺氧-好氧组合,并且可以免去回流过程,具有经济性。氧化沟工艺是利用反应器实现硝化反硝化作用,从而达到脱氮目的。

(2)生物膜脱氮工艺。生物膜脱氮工艺主要适用于小型生产或试验中,其主要是将生物转盘、滤池等生物膜设计成脱氮反应器,从而起到脱氮作用。目前主要有浮动床生物膜反应器脱氮系统、浸没式生物膜反应器脱氮系统、三级生物滤池脱氮系统等,相比较活性污泥脱氮工艺,生物膜脱氮系统更加具有稳定性、产泥量少等优势,但其存在耗能大问题。虽然生物膜脱氮工艺具有一定的优势,且其在城市污水工程中具有明显的效果,但是还存在一定问题需要改善。生物膜脱氮工艺的经济性和高效性,使其在未来的发展中将会得到广泛应用。

(3)生物脱氮新工艺。生物脱氮新工艺主要包括短程硝化反硝化工艺、厌氧氨氧化工艺、全程自养脱氮工艺、限氧自养硝化-反硝化工艺等。短程硝化反硝化工艺主要是通过对氨氮氧化的控制,使其处在亚硝化阶段,随后反硝化,达到脱氮目的。短程硝化反硝化工艺具有流程简单、节省碳源、动力消耗的优势。厌氧氨氧化工艺是指在厌氧环境下,实现氨氧化还原为氮气。全程自养脱氮工艺主要适用于高浓度含氮废水,其通过对反应器溶解氧浓度的控制,起到控制氨氧化和反硝化比率的作用,通过提高反硝化速率可以提高脱氮法应。限氧自养硝化-反硝化工艺主要是通过控制溶解氧,并控制反硝化处在亚硝酸根离子阶段,最后通过氧化反应,形成氮气,实现脱氮目的。

2.2生物除磷技术

污废水生物除磷技术主要是从最开始在生产过程中发现的超量吸磷现象,通过研究和实践后,污废水生物除磷技术逐渐得到应用,其中目前应用比较广泛的生物除磷技术有厌氧-缺氧-好氧工艺法、氧化沟工艺、序批式活性污泥法、侧流除磷工艺、改良同步脱氮除磷工艺等。厌氧-缺氧-好氧工艺法主要是通过创设厌氧环境、缺氧环境和好氧环境,使聚磷菌达到释放磷、采集磷等作用。另外,如果采用缺氧环境、厌氧环境和好氧环境的布置方式,则可以起到更加明显的除磷效果,主要是由于在厌氧环境下硝酸盐负荷,从而使其在厌氧条件下利用吸磷动力,达到除磷目的。氧化沟工艺主要是利用反应器创设缺氧环境、厌氧环境和好氧环境,从而达到除磷目的。序批式活性污泥法主要通过曝气控制系统创设时间上缺氧环境、厌氧环境和好氧环境,最终通过排放富磷污泥达到除磷目的。侧流除磷工艺主要使用在污泥回流系统中创设厌氧环境,并与化学除磷法结合,从而起到良好的除磷效果。改良同步脱氮除磷工艺主要是通过进水和污泥在厌氧池混合,实现有效释放磷,并在后续构筑物聚磷,从而达到除磷目的。生物除磷技术主要是通过创设厌氧环境,使聚磷菌有效释放磷,从而达到除磷的效果。

2.3生物脱氮除磷技术

同时进行污废水脱氮和除磷是目前主要的研究方向,主要是由于硝化反硝化作用实现了除磷效果,从而可以达到同时除磷。因此结合生物脱氮技术和生物除磷技术,实现同时脱氮除磷功能的生物技术主要有厌氧-缺氧-好氧工艺法、氧化沟工艺、序批式活性污泥法、侧流除磷工艺、改良同步脱氮除磷工艺等。上述生物脱氮除磷技术不仅能够实现去除有机物和悬浮物等传统处理工艺要求,还能够达到脱氮除磷的目的,其主要是通过创设缺氧环境、厌氧环境和好氧环境空间或时间交替变化,有效提高脱氮除磷效率。目前在污废水中对生物脱氮除磷技术的应用越来越广泛。

3污废水生物脱氮除磷技术的发展趋势

我国对生物脱氮除磷技术的研究较晚,并没有对该种技术有足够的重视。随着时代的进步,如今我国对污废水生物脱氮除磷技术的研究越来越深入,并促使其向生物性和工艺改革方向发展,以起到脱氮除磷高效率和低能耗的作用。一般生物脱氮除磷系统中,由于硝化菌和聚磷菌存在泥龄的矛盾,因此需要注重利用改进工艺,实现除磷和脱氮在空间和时间的分开,通过对除磷和脱氮分别创设缺氧环境、厌氧环境和好氧环境实现生物脱氮除磷。另外还需要加强对有机碳源的研究,即探索能够使反硝化速率加快的可替代有机碳源,从而提高脱氮效率。利用微生物动力学特性,可以实现亚硝酸菌和硝酸菌的动态竞争,然而对于活性污泥的膨胀问题、沉降性能等还有待研究。

4结语

综上所述,随着工业发展和人们生活中污废水的增多,如何有效进行污废水处理成为相关单位考虑的重要问题。如果脱氮除磷技术不够完善,很容易导致水体富营养化,因此需要加强对生物脱氮除磷技术的研究。通过上述分析可知,同时实现生物脱氮技术和生物除磷技术的处理工艺,能够有效解决水体富营养化问题,并保障高效性和经济性。

参考文献

[1]刘强,徐德兰,张学杨.生态式膜生物反应器处理生活污水的中试研究[J].工业水处理,2015,(12).

[2]赫俊国,冯靖涵,王越飞,等.缺氧-厌氧-井型曝气工艺对生活污水的脱氮除磷效能与经济性分析[J].给水排水,2016,(1).

[3]王萍,张恩栋,孙慧超,等.固定化光合细菌脱氮除磷能力研究[J].广东化工,2015,(23).

简述生物脱氮的基本原理范文

关键词:生物脱氮;传统技术;新型技术

1传统生物脱氮技术

1.1废水的脱氮主要过程

废水中的氮以有机氮、氨氮、亚硝氮和硝酸盐4种形态存在。传统生物脱氮技术遵循已发现的自然界氮循环机理,如下图所示。

图1-1废水中的生物脱氮作用

1.2影响因素

1)pH:通常把硝化段运行的pH控制在7.2~8.2;反硝化段pH控制在7.5~9.2。

2)温度:硝化反应适宜温度为30~35℃;反硝化反应适宜温度15~30℃。

3)溶解氧:硝化在有氧条件下进行,活性污泥中DO≥2mg/L;生物膜法≥3mg/L;反硝化在缺氧下进行,对于活性污泥系统DO

4)碳源:废水中所含有机碳源、外加碳源、内碳源。

5)污泥龄:污泥龄一般控制在3~5d以上,最高可达10~15d。

6)抑制物质:某些有机物和一些重金属、硫及其衍生物、游离氨等有毒有害物质在达到一定浓度时会抑制硝化反应的正常进行。

7)循环比:对低氨氮浓度的废水,回流比在200%~300%较为经济。

1.3传统硝化反硝化工艺

几种主要的传统硝化反硝化脱氮工艺:

1)活性污泥法脱氮传统工艺

2)缺氧好氧脱氮工艺(A/O)

3)Bardenpho工艺

4)UCT工艺

1.4传统生物脱氮工艺存在的问题

硝化菌群增值速度慢,系统总水力停留时间较长、有机复合较低,增加基建投资运行费用;

反硝化时需另加碳源,增加运行费用;

硝化过程需投加碱中和,增加了处理费用;

氨氮完全硝化需要大量的氧,使动力费用增加;

系统抗冲击能力弱,高浓度氨氮和亚硝酸盐进水会抑制硝化菌的生长;

同时进行污泥回流和硝化液回流,增加了动力消耗及运行费用;

运行控制相对较为复杂等。

2常见的几种新型生物脱氮技术

2.1亚硝酸型硝化反硝化脱氮技术(短程硝化反硝化)

2.1.1技术原理

短程硝化反硝化生物脱氮是将硝化过程控制在HNO2阶段而终止,随后直接进行反硝化。

2.1.2技术特点

硝化阶段可减少25%左右的需氧量,降低能耗;

反硝化阶段可减少40%左右的有机碳源,降低运行费用;

亚硝化菌世代周期比硝化菌世代周期短,可减少硝化反应器容积,节省基建投资;

对亚硝酸盐进行反硝化,其速率要比硝酸盐进行的反硝化速率高1.5~2倍;

污泥产量降低;

减少了投碱量等。

2.1.3亚硝酸型硝化反硝化影响因素

最为重要的影响因素有:溶解氧、游离氨、pH值、温度、有机质、污泥龄、有害物质、有机碳源种类与浓度、亚硝酸氮浓度、工艺条件等。

2.2好氧反氨化技术

2.2.1技术原理

好氧反氨化是以无机物质作为电子供体的生物脱氮作用。

2.2.2技术特点

该过程由自养菌完成的,无需外加碳源,可节省成本,防止二次污染;

反应要求在低溶解氧的条件下进行,因此在实际操作中相对较容易控制;反应对氧气的需求减少,可降低能耗;

该工艺将反应控制在亚硝化阶段,缩短了反应流程和反应时间;

结合了同步硝化反硝化工艺,使硝化反硝化反应在同一个反应器里进行,具有较强的抗冲击负荷能力;

该技术对亚硝态氮的供应没有要求,含有高氨氮的废水可直接进入反应器。

2.2.3存在的问题

对环境条件较为严格,此类自养菌的生长繁殖较为缓慢。如何持续稳定的获得亚硝酸盐氮的积累,该技术的机理、影响反应的参数、成熟的反应数学模型等仍需进一步研究。

2.3同时硝化反硝化脱氮技术

2.3.1技术原理

硝化和反硝化反应发生在同样的处理条件及同一处理空间。为在同一反应器内同时实现硝化、反硝化和除碳提供了可能。机理主要有:宏观环境理论、微观环境理论、微生物理论。

2.3.2技术特点

硝化过程中碱度被消耗,反硝化过程中亦会产生碱度,能有效地保持反应器中pH稳定,且无需添加外碳源。

反硝化和硝化反应同时进行,可省去缺氧池的费用或减少其容积。

实现亚硝酸型硝化反硝化途径可在好氧段可节省约25%的O2,缺氧段可减少40%的有机碳,反硝化速率提高63%。

2.3.3实现同时硝化反硝化的影响因素

同时硝化反硝化工艺受到絮体结构特征、溶解氧浓度、碳氮比、温度、酸碱度、氧化还原电位(ORP)等因素的影响。

2.4厌氧氨氧化技术

2.4.1技术原理

指在厌氧或缺氧条件下,微生物直接以NH4+作为电子供体,以NO3-或NO2-作为电子受体,将NH4+、NO3-或NO2-转变成N2的生物氧化过程。

2.4.2技术特点

由于氨直接用作反硝化反应的电子供体,可免去外源有机物(如甲醇),节约运行成本。

厌氧氨氧化反应中的耗氧量较之硝化反应下降62.5%。

氨厌氧氧化的生物产酸量大为降低,产碱量降至为零,可节省中和所需的化学试剂,降低运行费用,也可减轻二次污染。

厌氧氨氧化技术无需外加碳源,大幅度减少曝气量,污泥产生量和CO2排放量可减少90%。

2.4.3影响因素

厌氧氨氧化工艺受到生物量、基质浓度、pH值、温度、有机质浓度、水力停留时间、固体停留时间等因素的影响。

3结论