欢迎您访问起点作文网,请分享给你的朋友!

当前位置 : 首页 > 范文大全 > 办公范文

生物技术技能(收集5篇)

来源: 时间:2025-11-07 手机浏览

生物技术技能篇1

生物质能是人类用火以来,最早直接应用的能源。随着人类文明的发展,生物质能的应用研究开发几经波折,最终人们深刻认识到,石油、煤、天然气等化石能源的有限性,同时无节制地使用化石能源,大量增加CO2、粉尘、SO2等废弃物的排放,污染了环境,给人类赖以生存的星球,造成十分严重的后果。而使用大自然馈赠的生物质能源,几乎不产生污染,资源可再生而不会枯竭,同时起着保护和改善生态环境的重要作用,是理想的可再生能源之一。生物质能的应用技术开发,旨在把森林砍伐和木材加工剩余物以及农林剩余物如秸杆、麦草等原料通过物理或化学化工的加工方法,使之成为高品位的能源,提高使用热效率,减少化石能源使用量,保护环境,走可持续发展的道路。

七十年代,由于中东战争引发的能源危机以来,生物质的开发利用研究,进一步引起了人们的重视。美国、瑞典、奥地利、加拿大、日本、英国、新西兰等发达国家,以及印度、菲律宾巴西等发展国家都分别修定了各自的能源,投入大量的人力和资金从事生物质能的研究开发。

我国生物质能研究开发工作,起步较晚。随着经济的发展,开始重视生物质能利用研究工作,从八十年代起,将生物质能研究开发列入国家攻关计划,并投入大量的财力和人力。已经建立起一支专业研究开发队伍,并取得了一批高水平的研究成果,初步形成了我国的生物质能产业。

2、生物质能应用技术的研究开发现状

2.1国外研究开发简介

在发达国家中,生物质能研究开发工作主要集中于气化、液化、热解、固化和直接燃烧等方面。

生物质能气化是在高温条件下,利用部份氧化法,使有机物转化成可燃气体的过程。产生的气体可直接作为燃料,用于发动机、锅炉、民用炉灶等场合。气化技术应用在二战期间达到高峰。随着人们对生物质能源开发利用的关注,对气化技术应用研究重又引起人们的重视。目前研究主要用途是利用气化发电和合成甲醇以及产生蒸汽。奥地利成功地推行建立燃烧木材剩余物的区域供电计划,目前已有容量为1000~2000kw的80~90个区域供热站,年供应10×109MJ能量。加拿大有12个实验室和大学开展了生物质的气化技术研究。1998年8月了由Freel,BarryA.申请的生物质循环流化床快速热解技术和设备。瑞典和丹麦正在实行利用生物质进行热电联产的计划,使生物质能在提供高品位电能的同时满足供热的要求。1999年,瑞典地区供热和热电联产所消耗的能源中,26是生物质。

美国在利用生物质能方面,处于世界领先地位,据报道,目前美国有350多座生物质发电站,主要分布在纸浆、纸产品加工厂和其它林产品加工厂,这些工厂大都位于郊区。装机容量达7000MW,提供了大约66000个工作岗位,根据有关科学家预测,到2010年,生物质发电将达到13000MW装机容量,届时有4000000英亩的能源农作物和生物质剩余物用作气化发电的原料,同时,可按排170000个以上的就业人员,对繁荣乡村经济起到积极的推动作用。

流化床气化技术由于具有床内气固接触均匀、反应面积大、反应温度均匀、单位截面积气化强度大。反应温度较固定床低等优点,从1975年以来一直是科学家们关注的热点。包括循环流化床、加压流化床和常规流化床。印度Anna大学新能源和可再生能源中心最近开发研究用流化床气化农业剩余物如稻壳、甘蔗渣等,建立了一个中试规模的流化床系统,气体用于柴油发电机发电。1995年美国Hawaii大学和Vermont大学在国家能源部的资助下开展了流化床气化发电的工作。Hawaii大学建立了处理生物质量为100T/d的工化压力气化系统,1997年已经完成了设计,建造和试运行达到预定生产能力。Vermont大学建立了气化工业装置,其生产能力达200T/d,发电能力为50MW。目前已进入正常运行阶段。

生物质的直接燃烧和固化成型技术的研究开发,主要着重于专用燃烧设备的设计和生物质成型物的应用。目前,已开发的技术有:林产品加工厂的废料(如造纸厂的树皮、家具厂的边角料等)的专用燃烧蒸汽锅炉,国外造纸厂几乎都有专门的设备,用来处理废弃物。由于生物质形状各异,堆积密度小较松散,给运输和贮存以及使用带来了较大困难,影响生物质的使用。因此,从四十年代开始了生物质的成型技术研究开发。现已成功开发的成型技术按成型物形状分主要有三大类:以日本为代表开发的螺旋挤压生产棒状成型物技术,欧洲各国开发的活塞式挤压制得园柱块状成型技术,以及美国开发研究的内压滚筒颗粒状成型技术和设备。美国颗粒成型燃料年产量达80万吨。

成型燃料应用于二个方面:其一:进一步炭化加工制成木炭棒或木炭块,作为民用烧栲木炭或工业用木炭原料;其次是作为燃料直接燃烧,用于家庭或暧房取暧用燃料。日本、美国、加拿大等国家,开发了专用炉灶。在北美有50万户以上家庭使用这种专用炉灶作为取暧炉。

将生物质能进行正常化学加工,制取液体燃料如乙醇、甲醇、液化油等;是一个热门的研究领域。利用生物发酵或酸水解技术,在一定条件下,将生物质转化加工成乙醇,供汽车和其它工业使用。加拿大用木质原料生产的乙醇上产量为17万吨。比利时每年用甘蔗为原料,制取乙醇量达3.2万吨以上,美国每年用农林生物质和玉米为原料大约生产450万吨乙醇,计划到2010年,可再生的生物质可提供约5300万吨乙醇。

生物质能的另一种液化转换技术,是将生物质经粉碎预处理后在反应设备中,添加催化剂或无催化剂,经化学反应转化成液化油。美国、新西兰、日本、德国、加拿大国家都先后开展了研究开发工作,液化油的发热量达3.5×104KJ/kg左右,用木质原料液化的得率为绝干原料的50以上。欧盟组织资助了三个项目,以生物质为原料,利用快速热解技术制取液化油,已经完成100kg/hr的试验规模,并拟进一步扩大至生产应用。该技术制得的液化油得率达70,液化油低热值为1.7×104KJ/kg。

生物质能催化气化研究,旨在降低气化反应活化能,改变生物质热处理过程,分解气化副产物焦油成为小分子的可燃气体,增加煤气产量,提高气体热解;同时降低气化温度,提高气化速度和调整生物质气体组成,以便进一步加工制取甲醇或合成氨。欧美等发达国家科研人员在催化气化方面已经作了大量的研究开发,研究范围涉及到催化剂的选择,气化条件的优化和气化反应装置的适应性等方面,并且已经在工业生产装置中得到了应用。

2.2国内研究开发

我国生物质能的应用技术研究,从八十年代以来一直受到政府和科技人员的重视。主要在气化、固化、热解和液化开展研究开发工作。

生物质气化技术的研究在我国发展较快,应用于集中供气、供热、发电方面。中国林科院林产化学工业研究所,从八十年代开始研究开发了集中供热、供气的上吸式气化炉,并且先后在黑龙江、福建得到工业化应用,气化炉的最大生产能力达6.3×106kJ/hr。建成了用枝桠材削片处理,气化制取民用煤气,供居民使用的气化系统。最近在江苏省又研究开发以稻草、麦草为原料,应用内循环流化床气化系统,产生接近中热值的煤气,供乡镇居民使用的集中供气系统,气体热值约8000KJ/NM3。气化热效率达70/以上。山东省能源研究所研究开发了下吸式气化炉。主要用于秸杆等农业废弃物的气化。在农村居民集中居住地区得到较好的推广应用,并已形成产业化规模。广州能源所开发的以木屑和木粉为原料,应用外循环流化床气化技术,制取木煤气作为干燥热源和发电,并已完成发电能力为180KW的气化发电系统。另外北京农机院、浙江大学等单位也先后开展了生物质气化技术的研究开发工作。

我国生物质的固化技术在八十年代中期开始,现已达到工业化规模生产。目前国内有数十家工厂,用木屑为原料生产棒状成型物木炭。螺旋挤压成型机有单头和双头二种,单头机生产能力为120Kg/hr,双头机生产能力达200Kg/hr。1990年中国林科院林化所与江苏省东海粮机厂合作,研究开发生产了单头和双头二种型号的棒状成型机,1998年又与江苏正昌集团合作,共同开发了内压滚筒式颗粒成型机,机器生产能力为250~300kg/hr,生产的颗粒成型燃料尤其适用于家庭或暖房取暖使用。南京市平亚取暖器材有限公司,从美国引进适用于家庭使用的取暖炉,通过国内消化吸收,现已形成生产规模。

生物发酵制气技术,在我国已经形成工业化,技术亦趋成熟,利用的原料主要是动物粪便和高浓度的有机废水。在上海亦已建成沼气集中供气系统。

沈阳农业大学从国外引进一套流化床快速热解试验装置,研究开发液化油的技术,和利用发酵技术制取乙醇试验。另外,中国林科院林化所进行了生物质催化气化技术研究。华东理工大学还开展了生物质酸水解制取乙醇的试验研究,但尚未达到工业化生产。

3、我国生物质能应用技术的展望

生物质能是一个重要的能源,预计到下世纪,世界能源消费的40来自生物质能,我国农村能源的70是生物质,我国有丰富的生物质能资源,仅农村秸杆每年总量达6亿多吨。随着经济的发展,人们生活水平的提高,环境保护意识的加强,对生物质能的合理、高效开发利用,必然愈来愈受到人们的重视。因此,科学地利用生物质能,加强其应用技术的研究,具有十分重要的意义。

目前,我国已有一批长期从事生物质转换技术研究开发的科技人员,已经初步形成具有中国特色的生物质能研究开发体系,对生物质转化利用技术从理论上和实践上进行了广泛的研究,完成一批具有较高水平的研究成果,部分技术已形成产业化,为今后进一步研究开发,打下了良好的基础。

从国外生物质能利用技术的研究开发现状结合我国现有技术水平和实际情况来看,本人认为我国生物质能应用技术将主要在以下几方面发展。

3.1高效直接燃烧技术和设备

我国有12亿多人口,绝大多数居住在广大的乡村和小城镇。其生活用能的主要方式仍然是直接燃烧。剩余物秸杆、稻草松散型物料,是农村居民的主要能源,开发研究高效的燃烧炉,提高使用热效率,仍将是应予解决的重要问题。乡镇企业的快速兴起,不仅带动农村经济的发展,而且加速化石能源,尤其是煤的消费,因此开发改造乡镇企业用煤设备(如锅炉等),用生物质替代燃煤在今后的研究开发中应占有一席之地。把松散的农林剩余物进行粉碎分级处理后,加工成型为定型的燃料,结合专用技术和设备的开发,在我国将会有较大的市场前景,家庭和暧房取暧用的颗粒成型燃料,推广应用工作,将会是生物质成型燃料的研究开发之热点。

生物技术技能篇2

关键词:生物脱氮;污水处理厂;升级改造;硝化反硝化

DOI:10.13789/ki.wwe1964.2016.0040

0前言

近些年来,由氮磷营养物污染引起的水体蓝绿藻暴发及水质恶化,已经受到社会公众的普遍关注。作为氮磷污染负荷削减任务的主要承担者,城市污水处理厂对水环境保护起着极其重要的作用。欧美等国家对氮磷污染的关注较早,而且也比较重视,制定的污水排放标准通常结合当地实际要求,运行管理控制比较严格。目前我国大部分城市污水处理厂面临着提高脱氮效率的艰巨任务,许多早期建设的污水处理厂都面临着升级改造的任务,亟需开展污水处理厂生物脱氮技术、运行与管理等方面的工程应用研究。污水生物处理过程中氮的转化包括同化、氨化、硝化和反硝化作用,因而城市污水处理厂生物脱氮的性能与上述氮的转化过程及相关技术措施密切相关。基于以上考虑,本文以典型城市污水处理厂为研究对象,以提标改造技术需求为背景,从污水生物脱氮的不同阶段及主要影响因素,开展生物脱氮工艺运行特性及强化脱氮效能技术对策的研究,以期对城市污水生物脱氮系统的稳定运行及面临的升级改造提供参考依据。

1材料和方法

1.1试验材料

本研究在华中某城市污水处理厂内进行,该厂设计处理能力8万m3/d,其生物处理工艺单元采用氧化沟池型。试验所用测定装置为容积1.5L的柱状有机玻璃反应器。硝酸盐氮与氨氮的含量采用HACH紫外分光光度计分析;溶解氧采用YSI溶解氧测定仪分析;曝气装置选择森森充氧泵;搅拌装置为ZR4-6型混凝试验搅拌器(搅拌时间和转速可自动控制,取转速35r/min)。

1.2分析测定方法

1.2.1硝化速率的测定自氧化沟不同位置取一定体积的混合液,置于配有曝气和溶解氧测定装置的反应器中,连续曝气并按一定时间间隔取样,测定液相中的氨氮(NH3-N)和硝酸盐氮(NO-3-N或NO-x-N)浓度变化,根据测定结果绘制NH3-N和NO-3-N(NO-x-N)浓度随时间t变化的关系曲线,由此计算出单位时间单位污泥浓度的NH3-N减少量(混合液中有机氮的氨化作用影响可以忽略)或NO-3-N浓度的增加量,所得结果即为该活性污泥系统的硝化反应速率,用mgNO-3-N/(gVSS•h)表示。需要注意的是,在活性污泥硝化速率的测定中,如果混合液样品中的NH3-N浓度已经过低,不能满足硝化速率测定所需的NH3-N浓度范围时,应考虑向混合液中加入一定量的NH4Cl或其他NH3-N物质。对于取自氧化沟进口端的混合液,考虑到回流液碱度已经被消耗,剩余碱度可能不足以满足后续测定所需,需要向混合液样品中投加一定量的碱性物质(氢氧化钠或碳酸氢钠)或先进行反硝化反应。硝化活性主要体现在硝化速率上,硝化过程比较复杂。理论上,可用NH3-N和NO-3-N的含量来表征硝化速率,但考虑到实际运行过程中,NH3-N转化为NO-3-N的过程中一部分有机氮转变为了NH3-N,它不能准确反映出硝化速率。因此,采用NO-3-N的含量变化来表征硝化速率[1]。1.2.2反硝化速率的测定在氧化沟进水与内回流混合处取适量混合液,适当速度连续搅拌,以防止污泥沉淀。搅拌过程中,每隔20min取混合液样品,经离心后测定上清液中NO-3-N的含量,根据检测结果作NO-3-N浓度对时间t的曲线,利用曲线斜率r和测定的混合液MLVSS值,由式NUR=r/MLVSS求得混合液的反硝化速率,用mgNO-3-N/(gVSS•h)表示。为揭示污水处理厂生物反硝化能力的现状,本试验将反硝化速率作为主要监测指标进行日常测定。1.2.3内源反硝化速率的测定在氧化沟出水末端位置取适量混合液,通过内源代谢过程进行反硝化,完全混合后,进行适度搅拌,防止污泥沉降。搅拌过程中,每隔20min取少量混合液,测定其中的NO-3-N的浓度,以NO-3-N浓度的变化作为内源反硝化速率,用mgNO-3-N/(gVSS•h)表示。

2结果与讨论

2.1同化作用

污水生物处理过程中,一部分氮(氨氮或有机氮)用于活性污泥微生物的生物合成,被同化成微生物细胞的组分,可与颗粒性不可生物降解有机氮一起,通过剩余污泥外排的途径加以去除。因此,可通过强化二沉池等设施泥水分离效果的技术措施来减少污泥颗粒对出水总氮浓度的不利影响。

2.2氨化过程

氨化是指污水中有机氮在氨化细菌的作用下转化为NH3-N的过程。实际上,要得到真正的氨化速率非常困难,因为细菌的生长也会利用NH3-N,产生的NH3-N也会被硝化菌所消耗,仅以水中NH3-N浓度的增加来表征氨化速率是不够准确的。但对于污水生物脱氮系统而言,氨化作用不是生物脱氮过程的限制因素,氨化过程与有机物的水解及转化过程同时进行,有机物水解与转化过程结束时,已基本完成外部含氮有机物的氨化过程。以氨化过程为突破口来提高脱氮效率并不现实,也无必要。

2.3生物硝化过程

氨氮在硝化菌的作用下转化为硝酸盐氮的过程称为硝化,是生物脱氮的重要阶段。硝化菌是由两组自养型好氧微生物通过两个过程完成的。第一步先由亚硝酸菌将氨氮转化成亚硝酸盐。第二步再由硝酸菌将亚硝酸盐氧化成硝酸盐。亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属等;硝酸菌有硝酸杆菌、螺菌属和球菌属等,硝化菌属专性好氧菌。它们利用无机化合物如CO2-3、HCO-3、CO2作碳源,从NH+4或NO-2的氧化反应中获得能量。硝化菌的主要特征是生长速率低、受温度影响大、对pH非常敏感以及受C/N比影响显著等。考虑到当前城市污水处理厂处理目标和运行调控的实际需要,本文主要从温度和投加填料的影响两个方面对生物硝化过程进行讨论。2.3.1温度对污水生物处理硝化速率的影响为考察城市污水处理厂生物脱氮的现状,本研究对氧化沟内活性污泥系统的硝化速率进行了日常跟踪检测,检测结果如图1所示。从结果可以看出,温度与硝化速率接近线性相关,其变化对硝化反应的影响非常明显,冬夏两季硝化速率相差甚至2倍以上。这会导致许多污水处理厂冬季生物硝化能力低下,出水TN超标。硝化过程是生物脱氮的限制因素,因此,采取合理措施提高生物处理系统低温时的硝化能力,是污水处理厂升级改造的重点所在。2.3.2投加悬浮填料对硝化效果的影响硝化菌具有较强的附着能力,在生物池内投加悬浮填料,形成活性污泥-生物膜复合脱氮系统,在不影响除磷效果的前提下,可大量富集硝化细菌,从而提高系统的硝化能力。投加填料已成为目前城市污水处理厂升级改造的重要技术措施之一,但对于投加填料所产生的强化硝化效果,莫衷一是。为此,本研究对投加悬浮填料的强化硝化效果进行了分析研究。本研究在水温14℃条件下进行,对比了投加填料与否对活性污泥系统硝化能力的影响,测定结果如图2所示,投加悬浮填料后,由于填料挂膜,系统功能微生物生物量提高,硝化速率有明显的提高。基于以上试验结果,通过采用投加悬浮填料的方法提高原活性污泥系统的硝化能力,是可行的,且工程建设、运行、管理相对比较简单,便于实施,是城市污水处理厂升级改造具有前景的方法之一,但在投加悬浮填料的工程应用过程中,应充分考虑填料的选型、填充率的选择以及填料流化的保障措施等因素。

2.4生物反硝化过程

反硝化作用是指亚硝酸(盐)和硝酸(盐)在异养微生物的作用下,被异化还原为氮气的过程。参与这一生化反应的微生物是反硝化菌。反硝化菌属兼性菌,在自然环境中几乎无处不在,污水处理系统中许多常见的微生物都是反硝化菌。如变形杆菌、微球菌属、假单胞菌属、芽胞杆菌属、产碱杆菌属等。有分子态溶解氧存在时,反硝化菌能够氧化分解有机物,利用分子氧作为最终电子受体。在无分子态溶解氧情况下,反硝化菌可以利用硝酸盐和亚硝酸盐中的N5+和N3+作为能量代谢中的电子受体被还原。2.4.1反硝化过程面临的问题为理清污水处理厂反硝化工艺单元的运行现状,对生物处理系统的反硝化能力进行了跟踪检测。如图3所示,水温对反硝化效果的影响并不大,系统反硝化速率基本维持在0.8mgNO-3-N/(gVSS•h)左右,基本处于较低的水平。究其原因,反硝化细菌在反硝化过程中需要消耗一定量的有机物。按照脱氮除磷理论以及化学衡算关系,转化1gNO-2-N为N2时,需要有机物(以BOD5计)1.71g,转化1gNO-3-N为N2时,需要有机物(以BOD5计)为2.86g[1],因此通常要求系统中的BOD5/TKN大于3才能满足脱氮的最基本碳源要求。也就是说,城镇污水处理厂的TN是否能稳定达标,BOD5/TKN的比例关系有很大影响。如图4所示,进水COD/NH3-N约为8,折合成BOD5/TKN不到2.5,且波动明显,可供反硝化细菌利用的有机物相对不足。因此,碳源不足是影响污水处理厂反硝化效果的关键因素,需要采取外加碳源、内碳源开发等有效技术措施提高生物脱氮系统的碳氮比。2.4.2投加碳源对反硝化的影响反硝化过程需要有机物作为电子供体,将硝酸盐氮还原为氮气,以实现污水脱氮的目的。通过在生物池内投加外部碳源,能够快速提高系统的反硝化能力[3]。本研究对比分析了投加碳源对生物处理系统反硝化能力的影响,如图5所示,投加已知量碳源(乙酸钠)后,反硝化能力显著提高。因此,在进水碳源不足的情况下,可以通过外加碳源的方法提高系统的反硝化效果,强化生物脱氮性能。2.4.3内源反硝化过程对脱氮效果的影响内源反硝化是指水中缺少底物的情况下,反硝化菌依靠内源消耗进行反硝化的过程。通常情况下,反硝化速度较慢,其作用容易被忽略。但多数情况下,受控或不受控的内源反硝化过程都是生物脱氮的重要组成部分,只是不希望二沉池因反硝化而出现污泥上浮等不良后果。内源反硝化发生在可快速利用和慢速利用的碳源已基本完全消耗的情况下,为此,本研究取样位置选择在氧化沟的出口处。测定的内源反硝化速率如图6所示,内源反硝化速率平均为0.68mgNO-3-N/(gVSS•h)。由此可见,内源反硝化对生物脱氮效果亦具有明显的贡献,在实际条件允许的情况下,可通过增加缺氧池的水力停留时间来充分利用内源反硝化过程,从而尽可能减少外碳源的投加,但需要防范由于内源反硝化过程造成的二沉池污泥上浮现象,或者所需的泥龄明显增加,不够经济。

3结论与建议

(1)由于排放标准升级,许多现有城市污水处理厂因TN等指标难以稳定达标而面临着升级改造的任务。改造工程应根据污水处理厂现状,从生物脱氮过程的不同阶段综合考虑,做到技术可行,经济合理,工程量小。(2)硝化是生物脱氮的重要过程,也是污水处理厂提高脱氮效率的限制因素之一。在污水处理厂升级改造过程中,属于需要重点考虑的单元,可通过投加悬浮填料、增大污泥龄等技术手段强化活性污泥系统的硝化能力,特别是低温环境下的硝化能力。(3)反硝化速率相对较快,但容易受到有机物含量不足的影响。在升级改造过程中,最重要的是保证充足的碳源,以满足TN稳定达标所需的碳氮比。在进水碳源不足的情况下,可通过投加外碳源、开发内碳源等技术手段来改善城市污水处理厂的反硝化效果,也可通过内源反硝化过程的合理利用作为强化脱氮效果的补充。(4)由于同化作用所形成的微生物中的氮组分以及颗粒性不可生物降解有机氮,可通过强化二沉池等设施泥水分离效果的技术措施来减少污泥颗粒中氮组分对出水总氮浓度的不利影响。

参考文献

1郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998

2王丽丽,赵林,谭欣,等.不同碳源及其碳氮比对反硝化过程的影响.环境保护科学,2004,30(121):15~18

3王社平,王卿卿,惠灵灵,等.分段进水A/O脱氮工艺反硝化速率的测定.环境工程,2008,26(3):56~58

生物技术技能篇3

生物质能源技术就是把生物质转化为能源并加以利用的技术,按照生物质的特点及转化方式可分为固体燃料生产技术、液体燃料生产技术、气体燃料生产技术。固体生物燃料技术包括生物质成型技术、生物质直接燃烧技术和生物质与煤混烧技术,是广泛应用且非常成熟的技术,生物质常温成型技术代表着固体生物质燃料的发展趋势;生物液体燃料可以替代石油作为运输燃料,不仅能解决能源安全问题,还有利于减少温室气体排放,还可以作为基本有机化工原料,代表着生物能源的发展方向,液体生物燃料包括燃料乙醇、生物柴油、生物质经气化或液化过程再竟化学合成得到的生物燃油BtL(BiomasstoLiquidFuel);气体生物燃料包括沼气、生物质气化、生物质制氢等技术,工业化生产沼气以及沼气净化后作为运输燃料GtL(GastoLiquidFuel)是近期内发展气体生物燃料的现实可行技术。1、固体生物质燃料生物质成型燃料燃烧是把生物质固化成型后采用略加改进后的传统燃煤设备燃用,该技术将低品味的生物质转化为高品味的易储存、易运输、能量密度高的生物质颗粒(pellets)状或状(briquettes)燃料,热利用效率显著提高,能效可达45%(如瑞典的Kcraft热电工厂),超过一般煤的能效。欧洲在生物质成型燃料方面起步较早,900万人口的瑞典年颗粒燃料使用量为120万吨,瑞典20%集中供热是生物质颗粒燃料完成的;600万人口的丹麦年消费成型燃料70万吨。瑞典还开发了生物质与固体垃圾共成型燃烧技术,解决了垃圾燃烧有害气体二恶英(dioxin)超标问题。直接燃烧作为能源转化形式是一项传统的技术,具有低成本、低风险等优越性,但效率相对较低,还会因燃烧不充分而污染环境。锅炉燃烧采用现代化的锅炉技术,适用于大规模利用生物质;垃圾焚烧也采用锅炉燃烧技术,但由于垃圾的品味低及腐蚀性强等原因,对技术水平和投资的要求高于锅炉燃烧。通过技术改进,生物质直接燃烧的能效已显著提高,直接燃烧的能效已达30%(如丹麦的Energy2秸杆发电厂,瑞典的UmeaEnergy垃圾热电厂)。美国生物质直接燃烧发电约占可再生能源发电量的70%,2011年美国生物质发电装机容量为9799MW,发电370亿Kwh。1)生物质固体燃料生产技术目前国内外普遍使用的生物质成型工艺流程如图1-1所示。压缩技术主要包括螺旋挤压式成型技术、活塞冲压成型技术和压辊式成型技术,其中前两种技术发展较快,技术比较成熟,应用较广。但一般的成型技术需要将生物质加热到80°C以上才能使其成型,所以能耗较高,增加了生物制成型燃料的成本。现有的生物质成型技术必须在加热条件下进行,常温成型技术则打破了这一传统概念。目前,中国(清华大学)和意大利(比萨大学)两国分别开发出生物质常温(<40°C)成型技术,使生物质成型燃料的成本显著降低,为生物质成型燃料的广泛应用奠定了基础。生物质材料的力传导性极差,但通过缩短力传导距离,给其一个剪切力,可使被木质素包裹的纤维素分子团错位、变形、延展,在较小的压力下,可使其相邻相嵌、重新组合而成型。利用这一理论制造的机械设备,可以实现自然含水率生物质不用任何添加剂、粘结剂的常温压缩成型。常温成型技术为生物质低成本地高效利用打开了方便之门,不仅可以生产高效固体清洁燃料,而且提高了生物质的能量密度,方便运输,可以作为液体燃料和生物化工产品的生产原料。成型燃料还解决了直接燃烧能效低的问题,使颗粒燃料可以在千家万户作为炊事、取暖燃料,而以往的生物质直燃技术只适用于大型锅炉系统,小型直燃系统能效仅为10-15%,且因燃烧不完全造成环境污染。但是,在原料脱水预处理、提高单机生产能力方面尚需做大量的工作。瑞典的StockholmEnergy公司1970年代末首先将3座100MW燃油锅炉改为使用生物质颗粒燃料;Kraft热电工厂在世界上首先开发热、电、颗粒燃料联产技术并投入商业化生产,能效高达86%。瑞典的生物质成型燃料已广泛应用于供热和工业锅炉,其中集中供热的20%是由颗粒燃料提供。瑞典的人均燃料占有量为130kg,居世界第一位。2)生物质直接燃烧技术生物质水分较高(有的高达60%左右),热值较低,燃烧过程还要考虑结渣和腐蚀问题。芬兰从1970年就开始开发流化床锅炉技术,现在这项技术

生物技术技能篇4

会上,中国农业技术推广协会生物质能源工作委员会正式成立,第一届理事会领导机构共有1名主任委员、10名副主任委员、3名常务理事组成,第一届理事会领导机构秘书处由5人组成,包括1名秘书长和4名副秘书长。我院能环所所长赵立欣任主任委员,副所长孟海波任副主任委员兼秘书长。主任委员赵立欣就生物质能源工作委员会成立筹备工作情况做了汇报,包括生物质能源工作委员会形成过程、建立完善管理规章制度、做好会员单位吸纳准备工作、确定内设机构等几个方面的工作;同时,从生物质能源技术调研、协助组织低碳技术论坛、国际合作与交流、组织博览会、举办国际研讨会等方面对生物质能源工作委员会酝酿成立以来开展的主要工作进行了简要总结。

会议审议通过了《生物质能源工作委员会章程》,选举产生了第一届理事会及领导机构,聘请了生物质能源工作委员会专家。中能国电集团的范爱国副总裁作为会员代表作了发言。最后,会议审议并通过了第一届理事会2013年工作要点。

最后,中国农业技术推广协会常务副会长陈生斗作重要讲话,提出五点意见:一、进一步提高对生物质能源的认识;二、进一步发挥桥梁纽带作用;三、进一步强化行业服务职能;四、进一步加强行业自律和自身建设;五、进一步深化国际合作与交流。

忙返乡民工充电促沼气利用提高

马必云李明涛

“我昨天才回来,习家店能源服务中心主任胡祖斌,今天就来检查沼气管路,并将我们这个村就近的返乡民工集中到一起,讲解沼气维护常识、综合利用等,学到了很多东西,今后希望能多举办一些这样的培训……”,日前,在湖北省丹江口市习家店镇大柏村,返乡农民工朱光均高兴地说。

生物技术技能篇5

关键词:县域农村;中学生物教师;教育技术能力;现状与对策

在《绵阳市电化教育馆关于公布绵阳市“十二五”教育技术研究课题2011年度课题立项的通知》的子课题《教育技术与学科教学有效整合效果研究》中,对全市生物学科教师教育技术能力现状进行了调查研究。通过问卷调查法、调查表法和访谈法,对全市76名中学生物学科教师进行了调查研究。调查内容除基本情况、参培情况外,围绕对教育技术能力作用的认识、运用和需求三个维度展开。分析调查数据,反映出了县域农村中学生物学科教师教育技术能力发展现状。

一、调查结果

(一)基本情况

1.性别、学历、年龄结构

被调查的76名教师中,男性有64人,占84.2%;女性有12人,占15.8%。工作年限在20年以上的有45人,占60%;工作年限在10-20年的有21人,占28%;工作年限在10年以下的有9人,占12%。数据反映:男教师比例大,青年教师偏少。

2.学历结构

76名被调查教师,全部达到专科以上学历,其中具有专科学历的有36人,占48%;具有本科学历的有40人,占52%。属于生物教育专业的为33人,占43.4%;非生物教育专业的为43人,占56.6%。虽然学历达标率100%,但一半以上是非生物教育专业教师。

(二)对教育技术作用的认识

1.教育技术对课堂教学带来的变化

76名教师在“使用教育技术整合课堂教学,带来的最主要变化”一问中,选择“教学观念得到提升”的有18人,占23.7%;选择“实现了教学手段多样化”的有24人,占31.6%;选择“增大了课堂教学容量”的有7人,占9.2%;选择“提高了课堂效率”的有15人,占19.7%;选择“提高了学生学习兴趣”的有12人,占15.8%。

2.对自主研修教育技术的看法

76名教师中,选择“有必要,在设施、设备操作技能方面还需再提升和学习”的有40人,占52.6%;选择“有必要,教育教学理念在教学中的具体运用形式(方法)方面有待学习”的有32人,占42.1%;选择“不需要,我已全面理解和掌握教育技术知识并能熟练运用”的有4人,占5.3%。

(三)教育技术运用能力

1.多媒体设备操作能力

调查显示,在“你对学校多媒体教学设备系统的操作是否熟练?”一问中,非常熟练或熟练的有40人,占52.7%;一般的有28人,占36.8%;不熟练的有8人,占10.5%。

2.使用网络资源能力

在“你获取教学资源的最主要途径”问卷中,选择从专业网站搜索的有34人,占45.3%,从教辅书籍获取的有22人,占29.3%;同事之间共享的有16人,占21.3%;通过光盘等电子资源获取的有3人,占4%。能根据教学需要熟练下载相应网络资源的有33人,占43.4%;一般的有36人,占47.4%;不能下载的有7人,占9.2%。

二、现状分析

通过数据分析,中学生物学科教师队伍及教育技术能力现状主要呈现以下特点:

(一)年龄偏大,青年较少

工作年限达到20年以上的教师占到中学生物教师总数的60%,而工作年限10年以下的青年教师仅占12%,中老年教师居多,年青教师不足。

(二)学历合格,对口率差

经过学历补偿教育,学科教师学历全部达到专科以上,达到教师法规定的合格学历,但生物专业对口从事生物教学的比例偏低,主要集中在初级中学。

(三)认识到位,自修不足

教育技术对课堂教学带来的正面影响、变化认同度比较高。但在培训合格后,在实际运用自主研修,继续学习、提高的不到一半。

三、讨论与对策

受编制制约,多年来,增补大学毕业生人数少,是导致教师队伍年龄老化和学科难以配套的根本原因。这一现状在相当长的历史时期难以改变。通过对现有教师提高培训,用继续教育政策实现教育技术能力等专业知识的更新,促进现有教师一专多能,成为主要的选择。

面对教师自主研修、运用现代教育技术能力参差不齐的现状,通过教育主管部门和学校的引导,施加外力的影响,是可以有所作为的。

(一)投入硬件,解决教育技术能力后续提高的物质基础

问卷显示“学校设施设备太落后”的有27人,占35.5%;最希望学校加强的方面,选择“更新设施、设备”的有41人,占54.7%。表明,现代教学媒体在部分学校、特别是农村学校还相对缺乏,还不能满足教师学习和进行学科教学的需要。《义务教育生物学课程标准》第四部分指出:课程资源是决定课程目标能否有效达成的重要因素。充分利用现有的课程资源,积极开发新的课程资源,是深化课程改革、提高教学效益的重要途径。为此,需要政府进一步加大对中小学特别是农村中学的设备投入力度,及时添置必备的硬件设施,更新网络信息资源,提供优质教学资源,满足教师培训和自主学习的需要。

(二)外部激励,调动教师自修、运用教育技术的内部动力

对于参加集中培训后,进一步进行教育技术的自主学习和运用,认为最大的阻力来自于“学校缺乏有效激励措施”的有17人,占22.4%;来自于“自主学习意愿不强”的有10人,占13.2%;合计35.6%。为此,学校教学管理中,对生物教师运用教育技术进行教学提出明确的指标,都应检查落实,并与绩效挂钩,一定会激发起教师内部的动力。

(三)校本培训,建立教师自修、运用教育技术的行动指南

1.提供学习时间

在教育技术自主学习的时间安排上,76名教师中仅有19人认为应该“完全自由、自主学习”,占25.3%。多数教师认为需要提供学习的时间。教研组在每期的教研计划中,划定一定的时间,是完全可以满足这一需求的。

2.学校适时组织

选择“组织校内统一培训”的有12人,占16%;有35人认为应该“分学科统一学习内容”,占46.7%;有21人认为应该“自由选择学习和统一安排相结合”,占28%。认为应该“自由学习和统一安排相结合”,占54.7%。显然,分学科,由教研组将自主学习与统一安排相结合是最受教师欢迎的方式。同时,对于教育技术应用成果的展示,有32人认为“有必要,每年定期组织”,占42.1%;有37人认为“有必要,不定期组织”,占50%;有7人认为“无必要”,占7.9%。通过成果展示,既促进教师的自我提高,也是极具示范作用和激励作用。

3.必要的专业引领

虽然选择“加大示范课的引领”的仅有14人,占18.7%,但通过访谈和实际观察研究,当前校本研修、校本培训最大的问题就是缺少专家、专业的引领,长期处于低水平上循环往复,使广大教师“厌烦”,被动应付。学校在选择本校的专业辅导的同时,可以从外校、教师培训机构、高校聘请专家或专业人员讲座、辅导,提高校本培训的质量。

笔者认为上级集中培训结束后,进一步提高中学生物教师教育技术能力的最佳方法是加强校本培训。建立健全激励机制,加强校本培训,假以时日,县域农村生物教师教育技术能力一定能得到有效提升。

参考文献: