欢迎您访问起点作文网,请分享给你的朋友!

当前位置 : 首页 > 范文大全 > 办公范文

消防系统设计(收集5篇)

来源: 时间:2025-11-21 手机浏览

消防系统设计篇1

【关键词】高层建筑;消火栓系统;消防水箱;自动喷水灭火系统;水喷雾系统

高层建筑投资规模大,建筑使用功能复杂,使得对设计的要求越来越高,特别是消防系统的设计,因此,我们在设计当中既要考虑到控火及灭火的安全性,又考虑到投资的合理性。本文就高层建筑消防给水系统设计及消防设计中应注意的问题与大家交流。

1工程概述

某高层建筑功能主要分为:商业广场及写字楼建筑,规划用地面积为15287m2,总建筑面积约为72411.2m2,其中地下建筑面积为22112m2,地上建筑面积为50299.2m2,建筑女儿墙高度为60.44m,地上16层,地下3层,其中地下2层和地下3层作为地下车库及设备用房,地下1层至地上4层为商场,5层至16层为办公等组成。

2高层建筑消防给水系统设计

该建筑使用功能复杂,地下2层到地下3层、地下1层到地上4层、地上5层到16层每层的消防防火分区都各不同。根据《高层民用建筑设计防火规范》GB50045-95(2005年版)、《自动喷水灭火系统设计规范》GB50084-2001(2005年版)的相关规定,该综合楼为一类高层建筑,设置室外消火栓系统、室内消火栓系统、自动喷水灭火系统、水喷雾系统。各系统消防用水量标准及一次灭火用水量见表1。

表1消防用水量标准及一次灭火用水量

2.1室外消火栓系统设计

2.1.1由本建筑西北两侧各引入一根DN200mm市政给水管,压力为0.25MPa,作为消防水源。

2.1.2室外消防采用低压制给水系统,由城市自来水直接供水,发生火灾时,由城市消防车从现场室外消火栓取水经加压进行灭火或经消防水泵接合器供室内消防灭火用水。

2.1.3室外消防为两路供水,设管径为DN200mm环状室外消火栓管道,并设室外地下消火栓6个,满足室外消防的要求。

2.2消防水池及屋顶消防水箱设计

2.2.1根据《高层民用建筑设计防火规范》GB50045-95(2005年版)》的相关规定,该综合楼按同一时间发生一次火灾考虑,按自动喷水灭火系统与水喷雾系统之中用水量最大值,再加上室内消火栓系统用水量计算消防水池容量。消防水池内贮存有3h室内消火栓灭火用水量及1h水喷雾用水量,水池有效容积为594m3,水池分两格。消防泵房、消防水池设置在地下3层。

2.2.2屋顶水箱间设有效容积为18m3消防水箱一座,提供消防系统初期用水,并设一套消火栓系统和自动喷水灭火系统合用的消防增压稳压设备,维持消火栓系统及自动喷水灭火系统平时压力。

2.3室内消火栓系统设计

2.3.1室内消火栓系统静水压力不超过1.0MPa,室内消火栓管道在竖向不分区。地下3层、地下2层消火栓管网为单独环状管网;地下1层至4层水平干管与竖向立管也构成环状,上干管设在4层,下干管设在地下1层;5层至16层水平干管与竖向立管也构成环状,上干管设在16层,下干管设在5层。消防水箱出水管及消防增压稳压设备出水管与16层水平干管相连。

2.3.2本建筑物内各层设消火栓进行保护的场所,其布置保证室内任何一处均有2股水柱同时到达。

2.3.3室外设3套消防水泵接合器,供水管分别与室内消火栓给水管网相连。

2.3.4室内消火栓水泵2台采用恒压切线消防水泵,一用一备。消防水泵设有平时自动巡检功能。

2.4自动喷水灭火系统设计

2.4.1采用湿式自动喷水灭火系统和预作用自动喷水灭火系统,地下2层、地下3层车库不采暖,设置预作用自动喷水灭火系统,其它为湿式自动喷水灭火系统。

2.4.2设计参数:商场、车库均按中危险Ⅱ级设计;办公按中危险Ⅰ级设计;喷水强度:商场、车库8L/min・m2,办公层6L/min・m2;作用面积160m2,最不利点喷洒头工作压力不低于0.05MPa。

2.4.3系统设计

(1)自动喷水灭火系统在竖向不分区。

(2)设置4组为预作用报警阀(用于地下2层、地下3层),8组为湿式报警阀,每组报警阀担负的喷洒头不超过800个。

(3)喷洒头:地下车库采用DN15mm直立式玻璃球喷洒头,动作温度为68℃、K=80;机械停车库采用带保护网仓库型快速响应喷头,动作温度为68℃、K=115,机械停车喷头按停车的托板位置分层布置,且应在喷头的上方设置集热板;地下1层商场部采用快速响应喷头,动作温度为68℃、K=80;其余商场、办公均采用下垂式吊顶玻璃球喷洒头,向下安装,动作温度为68℃、K=80。

(4)自动喷水灭火系统每个防火分区或每层均设信号阀和水流指示器。

(5)自动喷水灭火系统在泵房内设2台恒压切线消防泵,一用一备。消防水泵设有平时自动巡检功能,并在出水管上装有安全泄压装置。

(6)自动喷水灭火系统共设3套消防水泵接合器,供消防车从室外消火栓取水向室内自动喷水灭火系统补水。

(7)为了保证系统安全可靠,每个报警阀组的最不利喷头处设末端试水装置,其它防火分区和各楼层的最不利喷头处,均设DN25mm试水阀。

2.5水喷雾系统设计

2.5.1根据《民用建筑设置锅炉房消防设计规定》DBJ01-614-2002规定,水喷雾系统保护对象为直燃机和燃气锅炉。

2.5.2在地下1层燃气直燃机房内设有水喷雾灭火系统,设计喷水强度:10L/min・m2,水喷雾保护面积为256m2,系统设计流量为45L/s,最不利喷头处设计压力为0.25MPa;系统工作压力为0.65MPa,干管DN150mm。系统喷水响应时间60s。水喷雾系统设置一套雨淋阀组。水喷雾喷头采用专用水雾用开式喷头。

3总结消防设计中应注意的问题

3.1恒压切线消防水泵及防超压措施

恒压切线消防泵的特性是从零流量到最大流量之间的扬程变化幅度不超过5%,且小流量或零流量时不超压,此类水泵有供水压力稳定、供水可靠性高、寿命长等优点,在恒压切线消防泵启动运行的情况下,系统管网压力变化不大,系统比较安全,但在消防水泵因突然停电或其它原因造成开阀状态下水泵突然停止运转时,会发生停泵水锤。

3.2减压稳压型消火栓及减压孔板的选用

根据《高层民用建筑设计防火规范》GB50045-95(2005年版)》第7.4.6.5条规定,本工程室内消火栓系统静水压力不超过1.0MPa,室内消火栓管道在竖向不分区。消火栓栓口出水压力大于0.5MPa时,应采取减压措施,根据《自动喷水灭火系统设计规范》第8.0.5条中危险级场所中各配水管入口的压力均不宜小于0.4MPa的规定,本工程设计中减压措施为:室内消火栓栓口压力超过0.5Mpa的楼层,采用减压稳压型消火栓,喷淋系统各配水管采用减压孔板。减压稳压消火栓不需要人工调试,安装方便,但不能随意设置,依据减压稳压消火栓的栓前压力、栓后压力的特性曲线(参见04S202《室内消火栓安装》P35),当栓前压力等于0.4MPa时,栓后压力为0.25MPa;当栓前压力小于0.4MPa时,栓后压力明显下降。为了保证消火栓的水枪充实水柱不小于10m的要求,当栓前压力小于0.4MPa时,不应设置减压稳压消火栓。

3.3机械车库自喷水量的确定

本工程地下2层、地下3层车库为2层机械立体汽车库,自喷水量的计算是根据高有货架内置喷头仓库的的设计计算方法确定设计流量,分为天花板流量和车架内置部分流量,设计流量为二者之和,天花板下的喷头采用直立型,K=80,每个下层车位的保护喷头采用仓库型快速响应喷头,K=115,喷头的计算数量为8个,经计算自动喷淋的总水量为40L/s。

参考文献

消防系统设计篇2

关键词:消防;建筑;设计

中图分类号:TU2文献标识码:A

0前言:

目前,建筑小区消防给水设计多套用《建筑设计防火规范》(以下简称《建规》)和《高层建筑设计防火规范》(以下简称《高规》),尽管《建规》在条文说明中提到了区域消防,并做了一定的规范,如区域高压或临时高压给水系统。在《高规》中也明确了对于高层建筑群可集中设置消防水池和消防泵房。大多数建筑小区,同一时间发生的火灾次数为一次。因此,在一个建筑小区内可以考虑消防资源如消防水池、消防水泵、消防水箱、水泵接合器等共享,建立区域消防给水系统,既可以增加消防给水系统的可靠性,又便于职能部门监督,降低造价,便于维护管理。

1消防水池的有效容积在民用建筑工程设计中,消防水池有效容积是根据《建规》第8.6条、《高规》(2005年版)第7.3条和《自动喷水灭火系统设计规范》第9.1条确定。然而,对于群体建筑合用消防系统时,不同建筑物之间或同一建筑物地上与地下的消防类别出现差异,确定消防用水标准一般按最大一栋建筑(消防用水量最多的类别)选取。另外,规范规定了当室外给水管网能保证室外消防用水量时,消防水池的有效容积可不包括室外消防用水量,只储存室内消防用水量即可。对这一条,各地区执行标准有所不同。有的地区只要求有两根进水管就可;有的地区要求两条进水管分别从两条市政给水管接入;有的地区要求两条进水管分别接两个水厂;对于这一点,两条进水管分别从两条不会同时关断的市政给水管接入即可。

2消防水池保护半径《建筑设计防火规范》第8.6.2条第6款规定,消防水池的保护半径不应大于150m。在具体工程设计中,对于群体建筑,往往无法满足上述要求。要解决这个问题,可以采取以下措施:(1)在地下消防泵房的旁边设置一个主消防水池,该水池储存室内外全部消防用水,水池池底设连通管与室外专用消防取水口相连。对于距该消防水池取水口大于150m的需保护区域,可另分散设置一个(或超过一个)室外消防水池。(2)整个工程的室外消防水集中设置在一个消防水池内,在水泵房内配置一套消防稳压装置(水泵一用一备);在群体建筑的室外红线范围内,专门设置一套室外消防管网,管网上按规定配置室外消火栓。室外消火栓的水量水压由水泵房内配置的消防稳压装置保证。

3消防水池设计的注意事项3.1消防取水口位置及尺寸。在确定消防吸水口位置时,根据消防水池的实际位置不同,有两种情况。一是在消防水池顶板上由结构直接预留一直径1.0~1.2米的孔,用作消防车取水之用,或者在满足规范要求和方便消防车出入的位置设置一取水井,在底部用一DN300的管道与消防水池底部相连,并以适当坡度坡向取水井。

3.2地下消防水池的池底标高。室内外消防水池都应设置消防取水口,以供消防车取水。这种做法就需要室内外消防水池的最低水位都能满足城市消防车的吸水高度——不大于6.0m。另一种情况是,当地下室为两层或两层以上时,消防车的吸水高度大于6.0m就无法完成自动吸水。针对这种情况有两种方法:第一种,将室外消防水池设于地下一层,将室内消防水池设于最低地下层的办法;第二种方法是将室内外消防水池均设于最低地下层,同时在水泵房专门设置一组室外消防水提升泵,将室外消防水抽升至城市消防车内,即实行串联提升室外消防水。3.3消防水池不可动用措施。其具体做法有多种。(1)设置电节点水位控制仪,控制其它用途用水的最低吸水水位,当水池水位低于某一水位值时,强制性关断其它用途用水水泵电源。(2)在其它用途用水水泵吸水管上设置气孔,当水池水位低于某一水位值时,其它用途用水水泵吸水管自动进气,造成其它用途用水水泵无水可吸。

4区域消防给水实例

4.1基础条件为:如某住宅小区,建筑面积l.2万平方米,共20栋。最高建筑高度为25.5米。9层住宅楼;小区居住人数为5530人,生活用水量为95m3/h,所需水压为0.4MPa,小区室内消防用水量为5L/S(2.5L/S×2);小区室外消防用水量为25/S,消防所需压力为0.6MPa.城市向小区进水管为两根DN200,且是两个方向进水。

4.2小区消防给水系统设计:该小区供水采用变频调速供水系统,不考虑室内消防给水量和水压。室内消防供水量由专用消防供水干管(DN100)送至各7-9层住宅楼与室内消火栓系统连接,设置2台Q=L/S,扬程40-60m的消防专用泵,一用一备。在加压泵房内设一有效容积≥3m3的气压水罐,与消防管网连接。

4.3小区内设500m3蓄水池两座,其中消防水贮水216m3(火灾延续时间按2小时考虑),并设消防取水口,小区内消防管网环形布置并按《建规》设置室外消火栓。在小区消防给水管网上集中设置水泵接合器3个,间距3米,水泵接合器距蓄水池13米,距城市进水管上消火栓最大距离25m。

5、消防给水系统的几个问题

5.1屋顶消防水箱能否共用。从同一时间发生火灾次数的解释及防火实践来看,屋顶水箱完全可以共用。但也有疑问,如在一个小区火灾扑灭消防人员返回后,又发生了火灾,这时屋顶水箱的水没有得到补充,火灾初期的灭火用水无保障。

5.2水泵接合器的设置。目前,我国多数城市的供水能力不足,许多小区的供水需二次加压。假如小区单体建筑是《建规》要求设置消防给水系统,那么,消防队员到达火灾现场后,消防车从小区二次加压的生活给水管网上的消火栓取水,通过单体建筑上的室外水泵接合器向室内管网供水,也就是说,如果二次加压泵站发生故障则水泵接合器将失去作用,从这一点,也可以看出区域消防的优越性。

5.3消防蓄水池的设置,如前所述,在小区实现区域消防后,水泵接合器,宜集中设置在消防水池附近,对于较大的建筑小区,受消防车供水能力的限制,在一个小区集中设置一个水泵接合器及消防水池,不能满足消防要求,而应根据最大保护半径150米,每个水泵接合器的供水能力为10-15L/S这一原则,设置水泵接合器组。

5.4消防水泵的共用

如果小区内无高层建筑,按《建规》要求,生活、消防给水管最好合用,消防水泵的扬程应满足最不利建筑的最不利点的水压要求,消防水泵的流量应满足最不利建筑的消防用水量,室外消防用水量,火灾时的最大生活用水量。如果小区为高层建筑群,消防给水管道宜单独布置。如果小区面积不大,高低区消防系统宜分区设置消防泵,高低区自成消防系统。如果区域面积大,可不分区设消防泵,当水压超过《高规》要求时,可采用减压措施。

5.5自动喷洒给水系统

建筑小区内自动喷洒给水系统,可以共享喷洒泵、稳压泵、气压罐、高位水箱等自动喷洒设备。由于报警阀控制的喷头数有限制,因此,报警阀、控制阀、水力警铃等设备不宜共享。可共享的设备宜集中设置在小区消防泵房内。不可共享的设备宜设置在有自动喷洒给水系统的建筑的消防值班室附近的专用房间内。

5.6水泵接合器在消防分区上的设置方式以前认为建筑物高度超过50m的部分无法得到消防车的帮助,可以考虑不设置水泵接合器,但随着消防技术装备的更新发展,很多城市已配备了大功率的消防车,消防供水已远远超过了50m,不应再以50m作为是否设置水泵接合器的界限。

5.7有条件地"弱化"消火栓系统现在在我国尽管从整体上仍以室内消火栓系统为主要灭火手段,但在许多重要工程中,特别是涉外工程中已是以自动喷水灭火系统为室内主要灭火手段,在建筑物内普遍设置了自动喷水灭火系统。

消防系统设计篇3

关键词:核电站消防法规纵深防御设计基准消防供水系统稳压系统

随着我国核电事业的发展,以核发电近期已成为我国能源开发的重要课题。核电站主要由核反应堆厂房(以下简称核岛)、汽机厂房(以下简称常规岛)及技术性或非技术性建筑物(以下简称BOP)等组成。由于它生产设施的特殊性,无论在正常运行和事故条件下都要保证它具有足够的安全性。所以,核电站的消防设计也有别于通常的民用设计。

1应遵循的消防设计规范

目前国内民用设施的消防规范只适用于核电站的非核设施及其厂房。

对于核设施及其厂房的消防设计应遵循中国核安全导则HAD102/11《核电厂防火》。然而,该导则只是指导性文件,用它作为技术规范标准来指导防火设计不能完全满足要求。并且,国内核电站多数是引进国外的商业堆,其消防设计应与工艺系统和厂房设计、建造相匹配,所以还必须遵守引进国相应的防火设计规范。

《核电厂防火》中强调纵深防御设计概念,即冗余、多样配制消防安全措施,从而确保高水平的安全性。冗余即同功能、同类型设备重复设置。

2核电厂消防供水系统的作用

核电站火灾不仅造成巨大损失,可能造成的后果也是严重的:巨大的人员伤亡;威胁核安全或引发核安全事故;恶劣的公众影响。众所周知的切尔诺贝利核电站事故所造成的经济损失和对环境的污染都与火灾的二次效应直接有关。

因此,为确保足够安全,核电厂的防火设计必须满足总的安全设计要求。核安全导则HAD102/11《核电厂防火》明确:核电厂应通过在设计上运用纵深防御概念实现以下三个主要目标:①防止发生火灾;②快速探测并扑灭确已发生的火灾,从而限制火灾的损害;③防止尚未扑灭的火灾蔓延,从而将火灾对电厂安全重要功能的影响降至最低。

第二目标的实现依赖于能动的防火技术是否达到火灾的早期探测和扑灭的要求。核电厂消防供水系统是通过水泵这一能动设备向整个电厂消防灭火能动装置提供和输送具有足够设计压力、设计流量的消防水。其供水的可靠性是实现这一目标的根本保障。

下面以某核电站消防供水系统的设计来论述为实现上述第二目标而采取的措施。

3设计实例

某核电站引进法国压水堆型,规模:2×900MW,为商用核电站。其消防供水系统是向核岛、常规岛、BOP及厂区灭火装置提供和分配具有足够设计压力、设计流量的消防水。由于核电站核设施的特殊性,它的防火设计遵循两个基准:①保护具有执行安全功能的安全系统的消防设施的设计;②保护非安全系统的消防设施的设计。采用的设计规范:中国核安全导则HAD102/11《核电厂防火》、《法国压水堆核电站防火设计和建造规则RCC-I》及国内现行的防火规范。另外,该核电站消防设计按同一时间只有一次火灾发生;由于条件限制厂区内没设高位消防水池。

它的消防供水系统相当于民用建筑的稳(准)高压消防供水系统,是由消防水生产系统,分配系统,稳压系统及厂区室外消防栓组成(见图1)。

图1消防供水原理

3.1消防水生产系统

消防水生产系统是由水源、水泵、消防泵房和管路组成。它的功能是向两个机组的核岛厂房、常规岛厂房、BOP及厂区灭火装置提供具有足够设计压力、设计流量的消防水。

设计基准:由于与核岛消防供水有关,设计时按保护具有执行安全系统消防设施的设计基准考虑。根据RCC-I,消防泵所提供的消防水应满足常规岛设计基准火灾灭火流量(受固定灭火装置保护的设备所需的最大消防水量)的需要,并且保证在扑灭常规岛最大设计基准火灾的同时,有若干室内消火栓耗水200m3/h的需要。消防设施考虑冗余设计。另外,保护安全系统的消防设施、管道、阀门等附件在地震期间或地震后不允许被破坏,保证其功能的完整性,从而确保其所保护的安全系统的安全性。所以,除水源补水管外,系统划分为抗震系统,全部应按抗震级设计。

3.1.1水源

核电站消防水源的可靠性与否直接关系到整个消防水灭火系统的可运行性,正如《核电厂防火》5.4.3所述:水系统应当永久性地接到有保障的足够的消防水源上。它还关系到如何实现快速探测并扑灭确已发生的火灾,从而限制火灾的损害这一目标。所以水源必须是:具有足够、可靠的水量;消防水水质要符合要求。

该核电站消防水源有三个:正常情况下由生活饮用水系统自动向消防水池供水,水池设有控制饮用水管路电动阀门开关的液位信号。当生活饮用水系统供水失效时,转换成生水系统供水,由值班人员用手动阀门控制补水。这两个水源的水都流入两个独立的能贮存1400m3淡水的混凝土池子。第三个水源是海水,一旦消防水池水位降到低报警液位,值班人员需手动打开消防泵与海水连接的吸水母管的阀门,水泵直接吸入海水。

它的消防水池容量是根据汽机厂房的设计基准火灾灭火消防水量设计的。该水量大于核岛厂房的灭火用水量,所以对于核岛消防,水量贮存能满足要求。消防水池是抗震性的结构,从而确保了水源的可靠性。设置两个独立、冗余的淡水池保证了检修时水源的连续可用性。两套补水系统、两个水源(淡水和海水)的替代,增强了防御的纵深度。

消防水补水系统一个是生活饮用水、一个是经过过滤的生水,水质均符合消防水要求;采用的海水是经过转鼓滤网(滤网孔径3mm×3mm)过滤后,直接进入消防管网。所以说,该核电站消防水源的设计上具有多重的防御措施,体现了纵深防御的概念,是安全可靠的。

3.1.2消防水泵

消防水泵房是整个厂区消防灭火系统的心脏,它的设计要求如《核电厂防火》5.6.5所述在由水泵运行提供必要水量的厂区内,必须设置多重消防泵,以满足单一故障准则。单一故障准则可解释为在一套设备失效或不起作用的情况下,多重性可保住功能不致丧失。系统设计消防水量:1043m3/h(常规岛设计基准火灾灭火流量)+200m3/h=1243m3/h;系统共设4台水泵(每个机组2台泵),并联连接,出水管上设有压力开关。当管网压力1.275MPa(基点是±0.00m)时,单台泵的流量342m3/h;当管网压力为1.2MPa时,单台泵的流量445m3/h,此时允许任一台泵检修工况。消防水泵的动力供电有应急配电系统、应急柴油发电机两种。正常情况下,每个机组的两台泵分别由两个独立的应急配电系统供电。当应急配电系统事故时,启动柴油发电机作后备应急电源。

考虑保持多重系统部件间的独立性,设计共设4台消防水泵并分别放在4个抗震泵坑里,实体隔离,而且泵坑的四壁、坑底板及坑顶板是钢筋混凝土制造,耐火极限2.5h,这样保证了当一台消防泵受损时不殃及其余。水泵动力电源也考虑了冗余设计,减少了消防水泵失效的可能性。

3.2消防水分配系统

消防水分配系统由消防泵房至核岛、常规岛消防输水管,常规岛以后的厂区消防输水管组成。其功能是将足够设计压力的消防水根据各厂房的重要性依次分配给核岛、常规岛、BOP各建筑物。其中消防泵房至核岛的消防输水管承担着输送保护安全系统的消防水,应该按保护安全系统消防设施的设计基准设计。系统管网设置从泵房伸出两根消防管敷设在两个安全厂用水管沟里至核岛厂房,并在核岛内形成环网。在核岛消防环网上又引出两根消防管通向常规岛,在与常规岛供水管网分界处核岛两侧各设有一个电动隔离阀,它们在核岛失火或常规岛以后部分故障时可以关闭,确保了核岛的消防供水。根据RCC-I用来保护与安全相关的消防系统应按承受SSE设计,否则对与安全相关设备形成危险,……。SSE是指安全停堆地震荷载。这段管线按抗震1A级设计,即在SSE荷载条件下,能动部件(水泵)运行,非能动部件(管线)保持其功能。并且安全厂用水管沟及管道支架也是抗震(承受SSE荷载)设计。

常规岛及以后的厂区供水管网是按保护非安全系统消防设施的设计基准设计,管网没有抗震要求。常规岛各自厂房内形成环网,两个环网之间由一根连通管连接。在1#汽机厂房外侧设有消防稳压装置,其出水管接在汽机厂房的环网上,管网运行压力维持在1.2MPa(基点±0.00m)。两个汽机厂房各引出两根水管在厂区形成环网,围绕着核岛、常规岛及各厂房又布置成若干环路,每个环路都设有隔离阀。管网运行压力维持在1.2MPa是基于核岛或常规岛的某些固定灭火装置要求确定的,而对于消火栓系统而言就显得过高。在常规岛与BOP之间的三根消防管线上分别设置三套减压阀组,在无火灾情况下,减压阀组上游管网压力为1.2MPa,阀组后管网压力为0.8MPa。厂区室外消火栓的布置:参照国内消防规范,沿着厂区室外消防管网每120m设置一个室外消火栓。

3.3消防水稳压系统

消防供水系统中稳压系统在整个消防管网中举足轻重:既要维持日常的管网运行压力,还要提供火灾初期或第一台消防泵尚未达到额定功率时的初期火灾消防水量。它的可靠性与否决定着是否能有效地限制火情的蔓延。

该核电站的稳压系统采用的是由气压罐、稳压泵、空压机组成的稳压装置(见图2)。它由1个75m3的气压罐,2台1.5L/s的补水泵,2台稳压空压机及配套管网组成。工作原理:当整个厂区消防给水系统因泄漏、排水或有消防用水时,气压罐内水位和压力随之下降,当水位达到设定的低水位时,此时如系统压力未达到正常运行压力1.2MPa,则稳压空压机启动为气压罐补气,达到为整个厂区消防系统补压的目的,当压力达到正常状态后,稳压空压机停止运行。在这一过程中当补水泵启动后,如果整个厂区消防给水系统的水压仍继续下降,则当压力下降到一个更低的压力值1.1MPa时,主消防泵将自动启动。所提供的初期火灾消防水量是气压罐内储存的压力为1.2MPa,容量为25m3的消防水,是基于电源正常,主消防泵要在启动43s内达到正常运行状态的条件下确定的。它能满足火灾时,至少向管网提供的是电厂可能发生最大一次火灾的最初1min的消防水。补水泵的水源是敷设在汽机厂房的生活饮用水管。整个系统是非抗震设计。系统的特点:稳高压系统,火灾时,不仅能提供必要的初期消防水量也能保证消防水压;补水泵、空压机是冗余设计;运行维护可靠,具有与高位水箱稳压系统等同的作用效果,并且实用、可行、经济。

图2消防稳压装置原理

3.4运行

正常情况下,消防水池和系统是充满水的,系统压力由设置在汽机厂房的稳压系统控制。当发生火险,系统压力值降至某一定值时,在30s内,应急配电系统供电,消防泵根据消防水量、系统压力的变化依次启动,若超过30s,消防泵由应急柴油发电机(后备应急电源)供电。在自动方式失效时,可在主控室或就地进行手动启动干预。消防水通过分配系统供应至消防用水点,消防完毕后,水泵的停运由主控室手动操作。

4结论

消防系统设计篇4

【关键词】高层建筑;消火栓系统;消防设计

近年来随着经济的发展,现代高层建筑日趋增多,发达城市建设中尤为增多,但高层建筑一旦发生火灾,室内消防难度就加大,要解决火灾扑救难、防火要求高等问题,就要从消防系统的稳定性与可靠性考虑,尤其对室内消火栓系统不能忽视。本文通过案例分析方法,对一般超高层建筑所采用的四种室内消火栓给水系统进行研究分析,从而得出最优使用方案。

1项目概况

某建筑高度为125.4m,总建筑面积9.5万m2。地下一层为车库、变配电室及设备用房;地下2层为车库及附属设备用房;1层~12层、14~23层、25~37层为办公,13层及24层为避难层,避难层内设有空调室外机机房、水泵房、电气用房及风机房等;顶层为风机房、电梯机房及水箱间等;屋顶设停机坪。本工程设有室内外消火栓系统、自动喷水灭火系统、气体灭火系统等。

2室内消火栓系统设计方案分析

2.1消防供水设计要点

根据GB50045—95《高层民用建筑设计防火规范》第7.4.6.5条规定,消火栓栓口的静水压力不应大于1.00MPa,当大于此值时,应采取分区给水系统。消火栓栓口的出水压力大于0.5MPa时,应采取减压措施。根据《消防给水及消火栓系统技术规范》(2011年征求意见稿)第4.3.2.3条规定,消防给水系统任何时间和地点系统的压力不宜超过2.4MPa。

2.2设计方案研究

本工程的建筑高度125.6m,消防水池和水泵房设置于地下2层,水泵房至建筑屋面垂直高度为131.5m。根据此种情况,在满足超高层建筑消防设计基本要求的前提下,分别设计了并联分区供水、减压阀减压分区供水、串联分区供水、高位消防水池分区供水四种设计方案。各消防给水系统的方案及具体分析如下:

2.2.1并联分区给水系统

供水方式介绍:消防给水管网竖向分区时,每个区分别有各自专用消防水泵,并集中设置于消防泵房内。

本工程按照此供水方式,选择设计方案如图1所示。系统分为高、中、低3个区。分区原则充分考虑在避难层设置分区设施和布置管道。其中,地下2层~13层为低区,14~23层为中区,24层以上为高区。低区消防给水由设于地下2层低区消火栓给水泵组供给;中、高区消防给水由设于地下2层高区消火栓给水泵组供给;中、高区消火栓系统的压力依靠屋顶消防水箱间的增压设备确保;低区消火栓系统的压力依靠屋顶消防水箱静水压力确保。低区消火栓系统设置独立低区用水泵结合器,对于超出消防车供水范围的高、中区,设置独立高、中区用水泵结合器,且加设消防水泵结合器接力泵两台。

上述设计方案中,本建筑各分区供水设施集中放置在地下2层消防水泵房内,系统构成简单、各区互不影响,运行和维护管理方便,安全系数较高。考虑到国内消防水泵扬程的局限性和系统管网的承压能力,结合规范对系统压力不宜超过2.4MPa的要求,扣除系统的压力损失及确保最不利点消火栓的0.15MPa压力,理论上此方案适用于供水高度低于180m的超高层建筑。

2.2.2减压阀减压分区给水系统

供水方式介绍:消防给水管网竖向分区时,通过比例式减压阀或可调式减压阀按照规范要求的系统压力限值,将系统分成若干个分区。减压阀通常有可调式减压阀和比例减压阀两种。可调式减压阀前后最大压差不应大于0.4MPa;比例式减压阀的减压比一般不宜大于3:1,当一级减压阀减压不能满足要求时,可采用减压阀串连减压,减压阀串连减压不宜超过2级。

本工程按照此供水方式,选择设计方案如图2所示。系统分为高、中、低3个区,其中地下2层~13层为低区,14~24层为中区,25层以上为高区,各分区均由设于地下二层消防泵房内的两台消防水泵组统一供水,其中低区和中区通过减压阀减压后供给。各区消火栓系统的增压设施与水泵结合器的设置与并联供水设计方案相同。

与并联供水设计方案相比,此方案是在并联供水方案的基础上,通过在中、低区分别增设一套比例减压阀组并减少一组消防供水泵组来实现。此方案构成简洁明了,减少了各分区的独立供水设备,大大降低了初始投资。但是由于低区和中区的供水压力均通过减压阀减压来实现,因而减压阀的可靠性就成为了系统安全可靠与否的关键,在实际工程中减压阀组宜设计为两组同径并联及在减压阀前后两侧分别增设压力传感器的方式,以确保减压阀组的正常工作,提高系统的安全性。理论上,该设计方案与并联供水设计方案的供水高度均可达到180m。但考虑到加压阀质量的安全、可靠性,此种供水方式一般适用于减压阀组设置数量不多的一般高层建筑的消防供水中,而作为可靠性要求较高的超高层消防供水应谨慎采用。

2.2.3串联分区给水系统

供水方式介绍:串联分区供水是超高层建筑消防供水中常见的一种形式,消防给水管网竖向分区时,每个区由消防水泵或串联消防水泵分别向上级供水,以满足各分区的消防供水要求。串联消防水泵一般设置在避难层,或者在设备层内。

消防系统设计篇5

关键词:NFPA;国外火力发电厂;消防

中图分类号:TM62文献标识码:A

前言

火力发电厂的消防系统设计主要涵盖电厂的主厂房、集控楼、变压器区、油罐区、辅助车间、附属建筑及煤场的室内外消防。国内电厂消防系统的设计,除依据《火力发电厂与变电站设计防火规范》(GB50229-2006),以下简称《电厂防火规范》)和其他相关设计规范外,还应依据当地消防部门及业主的要求进行设计。

整个NFPA标准目录和分类众多,大约有285本相关规范,与国标《电厂防火规范》作用类似,属原则性的规范是:NFPA850-发电厂和变电站的消防安全推荐规范(RecommendedPracticeforFireProtectionforElectricGeneratingPlantsandHighVoltageDirectCurrentConverterStations)。

其他设计中常用的NFPA(美国消防协会规范)如下:

NFPA15-《水喷雾灭火系统规范》(StandardforWaterSprayFixedSystemsforFireProtection)

NFPA14-《消防立管、自备消火栓及水龙带系统安装标准》(StandardfortheinstallationofStandpipeandHosesystems)

NFPA13-《自动喷水灭火系统安装规定》(Standardfortheinstallationofsprinklersystems)

NFPA2001-《洁净气体灭火系统规范》(StandardonCleanAgentFireExtinguishingSystems)

NFPA10-《便携式灭火器标准》(StandardforPortableFireExtinguishers)

NFPA11-《泡沫灭火系统规范》(StandardforLow-,Medium-,andHigh-ExpansionFoam)

下面分别对电厂内各主要消防系统及消防措施进行介绍。

一消防水量计算

NFPA850要求消防系统的设备及设施均需消防专用。消防供水系统必须满足(1)和(2)二个小时的用水量,其中(1)最大固定消防设施的用水量或一次火灾中同时使用的相关固定消防设施;消火栓水量不小于500gpm(1890L/min=31.5L/s)。

《电厂防火规范》规定:厂区内消防给水水量应按同一时间内发生火灾次数及一次最大灭火用水量计算。建筑物一次灭火用水量应为室外和室内消防用水量之和。

二者的区别:第一,NFPA850规定供水系统是按二个小时的供水能力设计,国内规范对各个不同用途的消防用水要求的灭火时间不尽相同,具体以各系统规范为准。第二,对于消火栓的用水量国内规范区别不同等级、类型的建筑物有不同的用水标准,而NFPA850则设定最小值,相对简单。

二消防水泵及消防水池

NFPA850中对于消防水泵要求如下:因根据火灾的风险,设置不同类型的水泵并考虑备用;消防水泵自动启动,手动关闭。对于消防水池,如果有双重用途应有措施保证消防水量不被挪用。这些要求与《电厂防火规范》的规定是一致。

对于水池的补水时间:《电厂防火规范》及《建筑设计防火规范》的规定不宜超过48h:而NFPA850则要求8h内完成补水。

三消火栓系统

3.1室外消火栓系统

NFPA850中对于室外消火栓系统的要求主要如下:主厂房周围的消火栓间距不应大于300ft(91.4m)。较偏远的区域,如媒场,消火栓间距不应大于500ft(152.4m)。室外消防环状管网上应设置带阀位显示装置的隔绝阀门。室外消火栓与消防管道连接的支管上应安装有阀门。室内成环设置的消防管道,应至少有两路进水,且每个进水管道上均应设有阀门,室内环状管网上也应设有合适数量的隔绝阀。

以上要求,根据《电厂防火规范》的规定均能满足要求,而且“室外消火栓布置间距,在主厂房及其它建筑物周围不大于80米”,标准高于NFPA850的规定。

3.2室内消火栓系统

对于室内消火栓系统,NFPA850将保护区域分为三级,分别就室内消火栓的布置、流量和压力进行要求,具体参见NFPA14的要求及分类。相比较国标要求的设置“室内消火栓的布置应保证每一个防火分区有两支水枪的充实水柱同时到达任何部位”,NFPA14要求设置消火栓的位置较多,因此在确定消防水泵扬程的时,应注意遵照NFPA14的规定进行。

四输煤系统的消防措施

在输煤系统,NFPA850与《电厂防火规范》相同的规定如下:输煤系统的消防范围包括有碎煤机室、输煤栈桥、主厂房煤仓间等,防护区内设有自动喷水或水喷雾灭火系统,并配备移动灭火器。煤斗设置CO2气体灭火系统,推荐采用低压CO2气体灭火系统,以便完成灭火和8小时的惰化。

区别在于,NFPA850要求“设计喷水强度不应小于0.25gpm/ft2(10.2mm/m2),最大保护面积2500ft2(232m2)”;国标要求:设计喷水强度不应小于12(L/min)/m2,最大保护面积260m2。水力计算时要加以区分。

五主厂房区域消防措施

在主厂房区域,NFPA850与《电厂防火规范》相同的要求如下:在主厂房各运转层设置室内消火栓系统,并配备移动灭火器。主厂房的控制室、计算机房、通讯机房及电缆夹层设置自动喷水或全淹没气体灭火系统。

在此区域,《电厂防火规范》未作要求,而NFPA850有特殊要求的消防设置如下:

1)汽轮机-发电机轴承应设置闭式自喷消防保护系统,采用定向喷头,推荐采用自动启动方式,设计喷水强度0.25gpm/ft2(10.2mm/min),保护范围为所有轴承。在已经投产的土耳其EREN(1+1)×600MW超临界燃煤机组项目(以下简称土耳其E项目)中,我们考虑到自喷如果误动作,直接喷水到高温的轴承,对设备的危害性很大,并且轴承本身非可燃物,所以建议业主不设自喷系统,只装设了火焰探测器。业主根据配置的消防措施并考虑到设备的安全性,最终同意了我们提供的消防方案。

2)励磁小室内设置全淹没二氧化碳消防系统。在土耳其E项目中,由于励磁小室位置靠近A排与其他电控室距离较远,且房间较小,单独设置气体消防。

3)开展系统功能试验

设备管理部门、专业技术班组或专门服务中介队伍,根据国家和地方有关消防管理规定,结合特殊消防系统的管理要求,开展火灾探测报警系统维护试验,确实保证系统供电畅通、主备电源自动切换、管理与值守有专人,操作人员经过专门培训,报警控制器运行功能正常,手自动触发器件有效工作,声光报警和应急广播系统正常工作,火灾探测器定期进行响应阈值及其他必要功能试验。

火灾自动报警系统联动控制定期试验,包括进行火灾探测报警功能试验;火灾报警控制器功能试验,包括火灾报警设备的报警功能、自检功能、消音复位功能、故障报警功能、报警信号优先功能、报警记忆功能、抗辐射电磁场干扰功能等试验;进行公用扬声器强行切换试验及消防通讯设备通话试验;火灾警报装置启动试验;消防联动控制设备启动停止控制,包括自动水消防控制设施中消火栓系统及喷水(喷雾)灭火系统联动试验;气体灭火系统控制设施联动试验及泡沫灭火系统控制设施联动试验等。

自动水消防系统的自动喷水灭火系统、水喷雾灭火系统的模拟启动试验和实际喷水试验。开展气体灭火系统进行模拟启动试验和模拟喷气试验。通过开展系统功能试验,保证各系统设施齐全、功能完整、运行正常、工作有效、监控到位,实现安全生产。

结语

综上所述,NFPA850只是根据电厂内不同建筑物的用途,给出消防措施或建议,不区分机组容量的大小;而《电厂防火规范》消防措施的选用上,则根据机组容量的大小,区别对待。本文的比较是基于《电厂防火规范》中对于300MW及以上的燃煤电厂的设置要求进行的。

应用NFPA进行电厂消防系统的设计核心是系统类型的选择、消防给水压力和用水量的确定,而这些也是NFPA标准与国内对应标准差别最大的地方。从已经完成的土E项目消防设计实践证明:掌握并运用好这几个要素,就能很好的将已熟悉的国内火电厂消防设计转化到国外项目的设计中,从而达到促进项目建设顺利开展的目的。

参考文献: