半导体工艺与技术范例(3篇)
半导体工艺与技术范文
关键词:微电子;制造技术;集成电路;发展
集成电路的研发和应用是电子科技领域走向现代化发展道路的里程碑,代表着微电子制造技术的形成,为更多高新科技电子产品的研发奠定了技术基础。在早期的微电子制造技术中,所使用的半导体材料一般是硅或锗。随着微电子制造技术的发展,以砷化镓与磷化铟为代表的第二代半导体材料逐渐被广泛应用。直到今天,半导体材料则主要是以氮化镓和硅化碳,这就是第三代微电子制造材料。在这三代的迭代更新中,其特征尺寸逐渐由毫米缩小到当前的纳米,代表着微电子制造技术水平的不断提升。以下本文就针对其具体的发展历程和发展趋势进行简单研究。
1、微电子技术的发展历程
自20世纪中期第一个集成电路研发成功之后,我们就进入了微电子技术时代,在半个多世纪的发展中,微电子技术被广泛应用在工业生产和国防军事领域,目前更是在商业领域中获得极大的应用和发展。并且在长期的发展进程中,微电子技术一直是以集成电路为主要的核心代表,也逐渐形成了一定的发展规律,最典型的莫过于摩尔定律。当然,集成电路的应用领域不断扩展也进一步刺激了微电子技术的快速发展。
在新事物的发展进程中,其发展规律和发展趋势势必要与需求相结合,并受需求的影响。微电子技术也不例外。在其发展进程中,微电子制造技术无疑是微电子技术最大的“客户”,正是因为微电子制造技术提出了各种应用需要,才使得微电子技术得到了快速发展。也可以说,微电子制造技术正是微电子设计技术与产品应用技术的“中介”,是将微电子技术设计猜想转化为实物的“桥梁”。但值得一提的是,这个实物转化的过程也会对微电子设计技术的发展产生影响,并直接决定着微电子器件的造价与功能作用。为此我们可以认为,在微电子技术的发展中,微电子制造技术是最重要的核心技术。
2、微电子制造技术的发展与制造工艺
在半个多世纪的发展中,微电子制造技术的应用主要体现在集成电路与分立器件的生产工艺上。集成电路和分立器件在制造工艺上并无太大区别,仅仅只是两者的功能与结构不一样。但是受电子工业发展趋势的影响,目前集成电路的应用范围相对更广,所以分立器件在微电子制造技术应用中所占的比重逐渐减少,集成电路逐渐成为其核心技术。
在集成电路的制造过程中,微电子制造技术主要被应用在材料、工艺设备以及工艺技术三方面上,并且随着产业化的发展,这三方面逐渐出现了产业分工现象。发展到今天,集成电路的制造产业分为了材料制备、前端工艺和后端工艺三大产业,这些产业相互独立运作,各自根据市场需求不断发展。
集成电路的种类有多种,相关的工艺也有差异,但各类集成电路制造的基本路径大致相同。材料制造包括各种圆片的制备,涉及从单晶拉制到外延的多个工艺,材料制造的主要工艺有单晶拉制、单晶切片、研磨和抛光、外延生长等几个环节,但并不是所有的材料流程都从单晶拉制走到外延,比如砷化稼的全离子注入工艺所需要的是抛光好的单晶片(衬底片),不需要外延。
前端工艺总体上可以概括为图形制备、图形转移和注入(扩散)形成特征区等三大步,其中各步之间互有交替。图形制备以光刻工艺为主,目前最具代表性的光刻工艺是45nm工艺,借助于浸液式扫描光刻技术。图形转移的王要内容是将光刻形成的图形转入到其他的功能材料中,如各种介质、体硅和金属膜中,以实现集成元器件的功能结构。注入或扩散的主要目的是通过外在杂质的进入,在硅片特定区域形成不同载流子类型或不同浓度分布的区域和结构。后端工艺则以芯片的封装工艺为主要代表。
3、微电子制造技术的发展趋势和主要表现形式
总体上,推动微电子制造技术发展的动力来自于应用需求和其自身的发展需要。作为微电子器件服务的主要对象,信息技术的发展需求是微电子制造技术发展的主要动力源泉。信息的生成、存储、传输和处理等在超高速、大容量等技术要求和成本降低要求下,一代接一代地发展,从而也推动微电子制造技术在加工精度、加工能力等方面相应发展。
从历史上看,第一代的硅材料到第二代的砷化稼材料以及第二代的砷化稼到以氮化稼为代表的第三代半导体材料的发展,大都是因为后一代的材料在某些方面具备更为优越的性能。如砷化稼在高频和超高频方面超越硅材料,氮化稼在高频大功率方面超越砷化稼。从长远看,以材料的优越特性带动微电子器件及其制造技术的提升和跃进仍然是微电子技术发展的主要表现形式。较为典型的例子是氮化稼材料的突破直接带来蓝光和白光高亮LED的诞生,以及超高频超大功率微电子器件的发展。
微电子制造技术发展的第二个主要表现形式是自身能力的提升,其中主要的贡献来自于微电子制造设备技术的迅速发展和相关配套材料技术的同步提升。光刻技术的发展最能体现出微电子制造技术发展的这一特点。光刻技术从上世纪中期的毫米级一直发展到今天的32nm水平,光刻设备、掩模制造设备和光刻胶材料技术的同步发展是决定性因素。这方面技术的提升直接促使未来微电子制造水平的提升,主要表现在:一是圆片的大直径化,圆片将从目前的300mm(12英寸)发展到未来的450mm(18英寸);二是特征尺寸将从目前主流技术的45nm发展到2015年的25nm。
微电子制造技术发展的第三个表现形式是多种制造技术的融合。这种趋势在近年来突出表现在锗硅技术和硅集成电路制造技术的兼容以及MEMS技术与硅基集成电路技术的融合。由此可以预见的是多种技术的异类集成将在某一应用领域集中出现,MEMS可能首当其冲,比如M压MS与MOS器件集成在同一芯片上。
4、结束语
综上所述,在科技的推动和电子科技市场需求的影响下,微电子技术得到了快速的发展,直接带动了以集成电路为核心的微电子制造技术水平的提升。现如今微电子制造技术已经能够实现纳米级的集成电路产品制造,为电子产片的更新换代提供了良好的材料支持。以当前科技的发展趋势来看,微电子制造技术在未来的电子器件加工中还将会有更大的发展空间,还需要我们加强研究,不断提高微电子制造技术水平。■
参考文献
半导体工艺与技术范文篇2
【关键词】高职艺术设计工学结合培养模式
【中图分类号】G642【文献标识码】A【文章编号】2095-3089(2013)10-0226-01
一、高职艺术设计专业的人才培养方向及目标
高职艺术设计专业以培养创新性、应用型高技能艺术设计人才为目标,这一特定的培养目标使得高职艺术设计专业人才培养过程具有其自身的特点,如更强调应用性和创新性。随着高等职业教育人才培养模式改革的不断深入,工学结合已成为改革的主要方向。教育部在《关于全面提高高等职业教育教学质量的若干意见》(教高〔2006〕16号)提出,要把“工学结合”作为高等职业教育人才培养模式改革的切入点,带动专业调整与建设,引导课程设置、教学内容和教学方法改革。在辽宁省高等教育教学改革研究项目中(辽教办发[2009]90号),再一次提出工学结合人才培养模式改革与创新的立项选题。可见,工学结合不但是高职教育人才培养模式的显著特征,也是高职教育的核心理念。
二、“工学结合”人才培养模式的基本内涵及特点
什么是工学结合人才培养模式?针对这一概念世界合作教育协会的解释是:“将课堂上的学习与工作中的学习结合起来,学生将理论知识应用于与之相关的、为真实的雇主效力且通常能获取报酬的工作实际中,然后将工作中遇到的挑战和增长的见识带回课堂,帮助他们在学习中进一步地分析与思考。”这种办学形式以增强学生的实践动手能力为突破口,以提高学生职业素质、缩短学校教育与用人单位需求之间的差距、提高学生的就业竞争力为根本原则,充分体现了“以就业为导向,以能力培养为核心”的职业教育理念,是适应社会发展变化的产物,也是我国职业教育改革与发展的核心领域。
“工学结合”模式下教学体系的实践性、开放性、职业性不仅体现为教学活动的主体由单一的学校变成企业和学校两个主体,而且还体现在教学场所、教学内容、师资队伍、教学评价以及教学资源的构成等诸多方面。这形成了当前“工学结合”的特点:在教学方面,教学场所从封闭的学校内部扩展到外部的行业企业中;教学内容从单纯地注重职业技能的提高转向注重职业岗位技能与职业发展的共同提高;教学结果评价由学校自主考评转变为由社会、企业考评认证与学校自主考评相互结合的方式。
三、“工学结合”人才培养教学模式的改革与创新
由于各专业方向培养目标不尽相同,教育对象以及所依赖的行业要求不同,教学改革实践中“工学结合”的实现途径也呈现出多样性。我校艺术设计专业针对当前情况,逐步采取并形成了“3+2+1‘导师’‘项目’制的教学模式”。
“导师”“项目”半工半读制教学模式:“3”为前三个学期的专业基础课教学阶段;“2”为第四、五学期的“导师”“项目”制半工半读教学阶段;“1”为最后一学期的校企合作,工学结合人才培养阶段。第一至第三学期为专业基础课程,三个学期内全部完成。第四、五学期为校内实习学期,采用“导师”“项目”制半工半读教学模式。
以“3+2+1‘导师’‘项目’半工半读教学模式”人才培养模式为核心,我校环境艺术设计方向对2005版教学计划进行了进一步的修订,自2005年起经过四年的摸索,2009版专业教学计划得以确定:
大连商务职业学院艺术设计环艺专业2005级、2009级教学计划对照表
在第四学期中“导师”带领学生到实习单位或实训室中开展专业课题设计,学生在实践环节中参与实际的设计施工,按劳计酬。使学生从入学到就业除了具有实践技能经验外还具有社会工作经验,缩短学生与企业距离,使学生在毕业前就直接具有社会职业经验,提高学生就业水平与质量。在实行“导师”“项目”制半工半读教学模式时,导师为本学院的专业课教师和外聘教师或公司的专业设计师。在第四学期分配学生的原则如下:1.改革初期采用硬性分配制,由专业教师组进行合理搭配,按照教师情况和学生情况进行分配。2.经过一段时间的磨合,实行“双选”制。学期初把专业课导师的名单公布,由学生选择导师,导师得到名单后进行选择核实。
建立适应“导师”“项目”制工学结合培养模式的课程评价体系和建立适应“导师”“项目”的管理制度。(1)部分专业基础课程与专业技能课在学校承认学生已有的学习和实际工作经历,在出示有效证明或通过测试后,允许免修相应课程,并折合成学分。(2)实践课程评价以学生实际工作成绩为标准,校企双方共同成立组织和管理机构,生产实习课程按教学与生产的要求制定管理办法,建立教师与企业管理人员双重考核。主要考核点包括学生的出勤率、产品合格率、生产效率、生产工艺的学习效果、生产操作的熟练程度、工作的态度、与同事的合作态度、遵守企业和学校的管理制度情况、对企业的贡献、工资水平等。(3)建立有关生产性实训的管理制度,并明确考核的办法和负责人,做到在制度上有保证,在管理上有措施,并严格进行考核。
在实践教学环节与实际设计施工相结合的过程中,完全按照设计公司的管理模式进行运作,设立了产品开发部、设计部、综合部等部门。每个部门均由专业教师、企业专职设计师和学生组成,引入企业的实际设计任务作为教学内容。我院环艺方向根据企业对技能专业人才核心能力的要求,重构课程体系,改革教学组织形式,通过“室内专题设计”、“施工技术专题”和“综合实训”等课程,实现了与设计公司的室内专题设计、施工技术专题等项目要求的对接。学生在完成设计制作任务的过程中,提高了设计能力、制作能力和团队协作能力,学习的主动性、积极性被极大地调动起来。
参考文献:
半导体工艺与技术范文
1CDIO工程教育理念
CDIO工程教育模式,是由美国麻省理工学院、瑞典皇家工学院等四所大学共同创立的工程教育改革模式。是近年来国际工程教育改革的最新成果,CDIO是构思(Conceive)、设计(Design)、实施(Implement)、运作(Operate)4个英文单词的缩写,以产品从研发到运行的生命周期为载体让学生以主动的、实践的、与课程之间有机联系的方式学习掌握知识&-4。迄今已有几十所世界著名大学加入了CDIO国际组织,这些学校采用CDIO工程教育理念和教学大纲开展教学实践,取得了良好的效果。
2存在的问题与课程建设思想
微电子技术研究的中心问题是集成电路的设计与制造,将数以亿计的晶体管集成在一个芯片上。微电子技术是信息技术的基础和支柱,是21世纪发展最活跃和技术增长最快的高新科技,其产业已超过汽车工业,成为全球第一大产业。微电子工艺课程主要介绍微电子器件和集成电路制造的工艺流程,平面工艺中各种工艺技术的基本原理、方法和主要特点。其课程建设思想是使学生对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,掌握当前微电子芯片制作的工艺流程、主要设备、检测方法及其发展趋势^7]。
但目前该课程教学中存在较多问题,教学效果不佳,主要有如下几点:(1)教材陈旧,没有较适合的双语教材,难以适应跨国际的微电子制造工艺新技术的快速发展;(2)教学内容信息量大,在教学时间短、内容多的情况下,教师难以合理安排教学进度;(3)在课程设置上重理论轻实践,技术性和实践性的内容较少,与迅速发展的工业实际脱节;(4)教学方法单一,理论联系实际不紧密,不利于学生课堂积极性的提高与创造性的发挥“5)实践教学环境较差,由于微电子工艺设备十分昂贵,有待加强高校精密贵重仪器设备和优质实验教学资源共享平台和运行机制的建设;(6)教评形式单一,忽略了实践教学与考核,致使大多数学生只是死记硬背书本知识的学习方式来应付考试。
3微电子工艺的课程建设
3.1教材选取及教学内容改革
本课程教材选用经历了《芯片制造一半导体工艺制程实用教程》、《现代集成电路制造工艺原理》到目前的首选教材:国外电子与通信教材系列中,美国MichaelQiurk和JulianSerda著《半导体制造技术》韩郑生的中文翻译本。该书不仅详细介绍芯片制造中的每一关键工艺,而且介绍了支持这些工艺的设备以及每一道工艺的质量检测和故障排除;并吸收了当今最新技术资料,如用于亚0.25pm工艺的最新技术:化学机械抛光、浅槽隔离以及双大马士革等工艺;内容丰富、全面、深入浅出、直观形象、思考习题量大,并附有大量的结构示意图、设备图和SEM图片,学生很容易理解,最主要的相对前两本教材,它更加突出实际工艺,弱化了较抽象的原理。
教学内容上采取调整部分章节,突出教学重点,并适当增减部分教学内容。本课程的目的是使学生掌握半导体芯片制造的工艺和基本原理,并具有一定的工艺设计和分析能力,课程仅32学时,而教材分20章,600页,所以教师需要精选课堂授课内容。从衬底制备、薄膜淀积、掺杂技术到图形加工光刻技术以及布线与组装,所涉及的概念比较多,要突出重点:薄膜淀积(氧化、蒸发、溅射、MOCVD和外延等),光刻与刻蚀技术、掺杂技术,需章节调整系统整合;对非关键工艺的5~8章(介绍半导体制造中的化学药品、污染及缺陷等内容)只作为学生课后自学阅读。第2章的半导体材料特性已在“固体物理”课程中详细介绍,第3章的器件技术已在‘‘半导体物理“晶体管原理”课程中介绍,第20章装配与封装会在“集成电路封装与测试”课程中介绍,故无需重复讲解。将第9章集成电路制造工艺概况放在后面串通整过工艺讲解,即通过联系单项工艺流程,具体分析讲解典型的CMOS芯片制造工艺流程,如由n-MOS和p-MOS两个晶体管构成的CMOS反相器,这样能够加深对离子注入、化学气相淀积、光刻关键技术、集成电路的隔离技术以及VLSI的接触与互连技术等内容的理解。
另一方面,指导学生查阅相关资料,对教材内容作必要的补充,微电子工艺技术的发展迅速,因此需要随时跟踪微电子工艺的发展动态、技术前沿以及遇到的挑战。特征尺寸为45nm的集成电路已批量生产,高K介质/金属栅层叠结构、应变硅技术已采用。而现有的集成电路工艺教材很少能涉及到这些新技术,为了防止知识陈旧,应多关注集成电路工艺的最新进展,尤其是已经投入批量生产的工艺技术,及时将目前主流的工艺技术融入课程教学中。
3.2教学方法的改革
(1)开发多媒体工艺教学软件,利用多媒体技术,将动画、声音、图形、图像、文字、视频等进行合理的处理,利用大量二维和三维的多媒体图片、视频来展示和讲解复杂的工艺构造过程。开发图文声像并茂的微电子工艺多媒体计算机辅助教学软件,给学生以直观、清楚的认识,有助于提高教学质量。
(2)微电子工艺综合共享实验平台建设,集成电路的制造设备价格昂贵,环境条件要求苛刻,运转与维护费用很大,国内仅部分高校拥有集成电路工艺试验线或部分实验分析设备。按照有偿服务或互惠互利原则共享设备仪器资源,创建各院校之间和与企业之间的“微电子工艺综合共享实验平台”可极大的提高集成电路工艺及其实验课程教学效果,即解决了一些院校资金短缺问题,同时也部分补偿了大型设备的日常使用和维护费用问题。其综合共享实验平台包括金属有机化合物MOCVD沉积技术、分子束外延、RF射频磁控溅射、XPS、XRD及AFM分析测试、光刻、离子注入等涉及投资巨大的仪器设备实验项目。
(3)拓展实践能力的校企合作,让学生带着理论知识走进企业的真实工程环境,探索利用企业先进的工艺线资源进行工艺实验教学与参观实习6-9]。参观实习能够使学生对集成电路的生产场地,超净环境要求具有深刻的感性认识,对单晶硅制造流程、芯片制造工艺过程以及芯片的测试和封装的了解也更加系统和全面。同时利用假期安排学生去企业实习,让学生参与企业的部分生产环节,亲身感受实际工艺生产过程,增加学生对企业的了解,也利于企业选拔优秀学生。
(4)工艺视频与工艺实验辅助教学,由于微电子工艺内容与生产密切结合,不能单靠抽象的书本知识教学,对于学生无法了解到的一些工艺实验与设备,可通过录像教学来补充。本学院购置了清华大学微电子所的集成电路工艺设备录像与多媒体教学系统,结合国外英文原版的工艺流程视频,通过工艺视频把实际工艺流程、设备和设备操作等形象地展示在课堂。多媒体教学系统提供了氧化、扩散和离子注入三项工艺设备操作模拟,可使学生身临其境地对所学的基本工艺进行简单的模拟。同时结合课堂教学开设半导体平面工艺实验,主要包括以:氧化、光刻、扩散、蒸铝、反刻、划片、装架、烧结、封装。实验以教师讲解与学生动手相结合,既培养了学生的实际动手能力,又使学生掌握了科学分析问题的方法,激发了学生的学习兴趣,加深学生对课堂理论知识的理解。
3.3多元化的考核评价体系
对学生的考核是对其具体学习成果的度量,也是检验教学改革成效的重要手段,为了更科学合理的考核学生,我们建立了多元化的更加注重过程参与的考试评价体系,降低了期末考试在总成绩中所占比例,最大限度避免学生靠死记硬背来应付考试和学生创新思维被抑制、高分低能现象产生。这种多元化、过程性的成绩评定方法,强调知识的积累与构建过程,消除了学生重理论轻实践,考前死记硬背应付考试的弊病。总评成绩由平时成绩和期末考试成绩两部分构成。但加大平时成绩的权重,平时成绩即包括了作业与考勤,还包括综合性实验成绩、设计仿真、国外工艺视频翻译、专题小论文和专题PPT论坛团队成绩等。同时在期末考题中增加openanswerquestion型、工艺过程设计型题目110-11。
4结语




